AN INTERNATIONAL REVIEW OF INDUSTRIAL INNOVATION POLICIES: LESSONS FOR BRAZIL'S 'INDÚSTRIA 2027'

Dr Carlos López-Gómez

Head, Policy Links, Institute for Manufacturing, University of Cambridge

MEETING AT BRAZIL'S NATIONAL INDUSTRY CONFEDERATION (CNI) DIALOGUES MEI

12 DECEMBER 2017 | BRASILIA, BRAZIL

About us

- Key messages
- Some key innovation frameworks
- Key insights from international policy efforts
- Conclusions

THE INSTITUTE FOR MANUFACTURING

Institute for Manufacturing [Division of Management & Manufacturing] Department of Engineering University of Cambridge

"Brings together expertise in management, economics and technology to address the **full spectrum of manufacturing issues**"

POLICY LINKS

Research-based advice and education services for technology and innovation policy makers

- Mission: help governments develop more effective industrial innovation policies
- Not-for-profit knowledge transfer unit of the Centre for Science, Technology & Innovation Policy (CSTI), University of Cambridge
- Informed by leading academic thinking, engineering know-how, and the study of the latest international practices

http://www.ifm.eng.cam.ac.uk/policy-links/

EXAMPLES OF PROJECTS

Clients

UNIVERSITY OF

CAMBRIDGE

Department of Engineering

Themes

Industrial strategy and high value manufacturing

Regional industrial development and smart specialisation

Technology strategy and innovation policy

About us

Key messages

- Some key innovation frameworks
- Key insights from international policy efforts
- Conclusions

- International practice: many programmes / initiatives / mechanisms established in countries around the world to support industrial innovation – potential to learn from international experience
- Variety of innovation policy missions and local contexts: approaches adopted internationally reflect diversity of goals and local contexts – important to avoid quick conclusions on effectiveness
- Potential to provide a useful international context to efforts in Brazil: review of international practice can provide ideas, help stimulate discussion, offer insights into what competitor countries are doing – but cannot by itself provide 'the answer'

- About us
- Key messages

Some key innovation frameworks

- Key insights from international policy efforts
- Conclusions

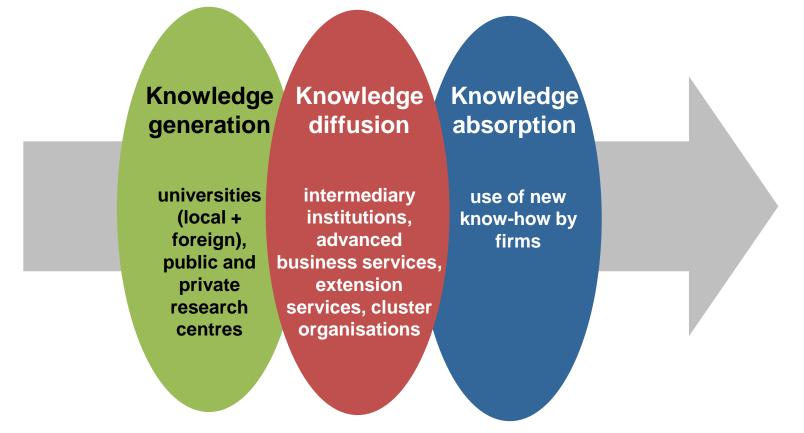
FUNCTIONS OF NATIONAL INNOVATION SYSTEMS

Overall function of an innovation system:

• To develop, diffuse and use innovations

Innovation system activities ('functions')

- Research (basic, applied, development, engineering)
- Implementation (manufacturing)
- **End-use** (customers of the product or process output)
- Linkage (bringing together complementary knowledge)


Education

FUNCTIONS OF NATIONAL INNOVATION SYSTEMS

Overall function of an innovation system: <u>To develop, diffuse and use innovations</u>

KNOWLEDGE GENERATION

Research and development activities related to new technologies, tools and techniques (at different levels of technological and manufacturing readiness)

Know gener	—
Ū	

Feasibility	 Create knowledge (re applied science concepts)
Proof of	 Use-inspired basic research / 'basic technology'
concept/application	research (proof of concept)
feasibility	 Formulation and testing of application concept
Development	Creation of technological knowledge
Concept validation in	 Applied research (proof of viability)
lab environment	Prototype development
Demonstration	Create system knowledge
Prototype	 Creation of technological knowledge
demonstration in	Prototype demonstration
realistic environment	
Deployment	 Create application knowledge
System demonstration	 Promoting entrepreneurial experiments
in real-world	 Technology 'qualification' through real-world
environment	demonstration/deployment

KNOWLEDGE DIFFUSION

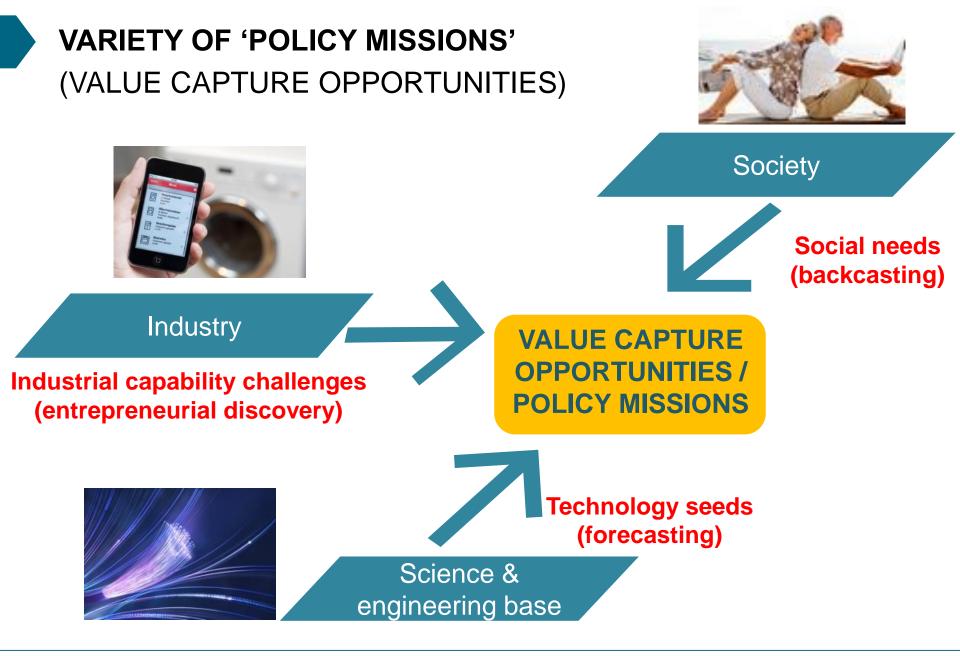
Development of network linkages, 'norms' of engagement and practice, system-wide intelligence and foresight (in order to facilitate efficient diffusion of knowledge and know-how)

		Facilitate information / knowledge exchange / bringing			
	Network linkages / convening	together complementary knowledge			
nowledge liffusion		Network development / KE via networks			
	/ industrial dialogue / etc	Articulation of demand / quality requirements			
		 Development of advocacy coalitions 			
	System	Guide direction of search (technology, market, partner)			
	intelligence	 Identifying technological possibilities/economic viability 			
	/ benchmarking	 Develop infrastructure for strategic intelligence 			
	/ foresight / etc	 Vision development / prioritising of public sources 			
	'Institution'	Legitimation			
	development	Facilitate regulation			
	/ standards	 Design and implementation of 'institutions' 			
	/ regulation /etc	Reduce social uncertainty			

Kn

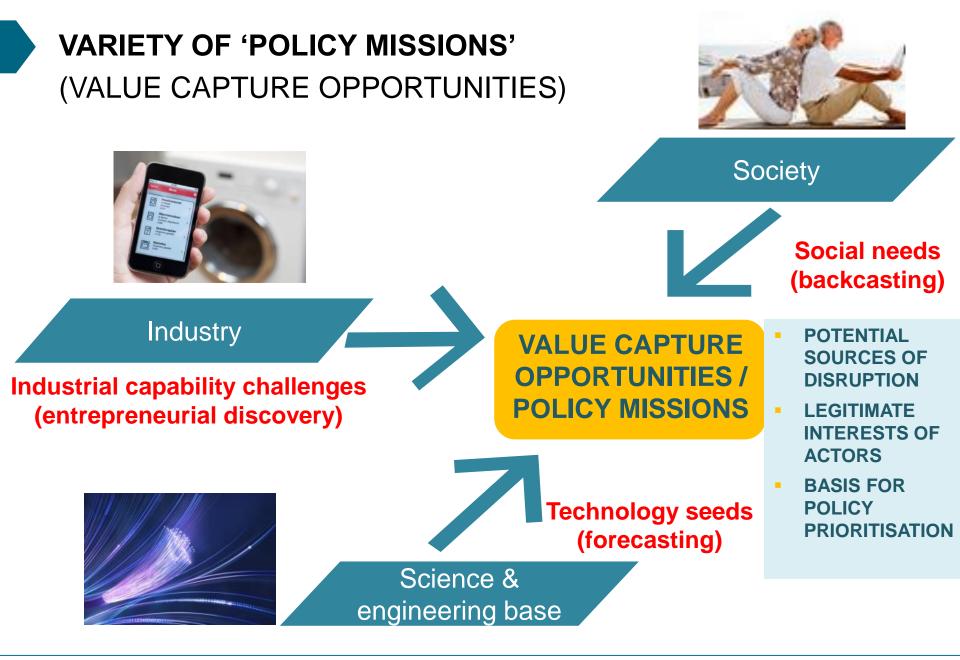
d

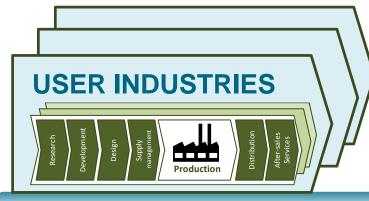
KNOWLEDGE ABSORPTION


Capability development activities related to accessing and applying new technological knowledge (and related know-how)

Knowledge absorption

Training	Creating human capital resources
/ skills	 Supplying competences
/ education	Learning through doing
	 Provision of consulting services
Access to	 Promoting entrepreneurial experiments
expertise/ facilities	Knowledge exchange
	Testing
Incubation support / assistance	 Business space + access to other
	functions/resources
	Mentoring
	• Early venture assistance (including marketing, etc)





WHAT INNOVATION THEORY TELLS US... AN EFFICIENT NATIONAL INNOVATION SYSTEM

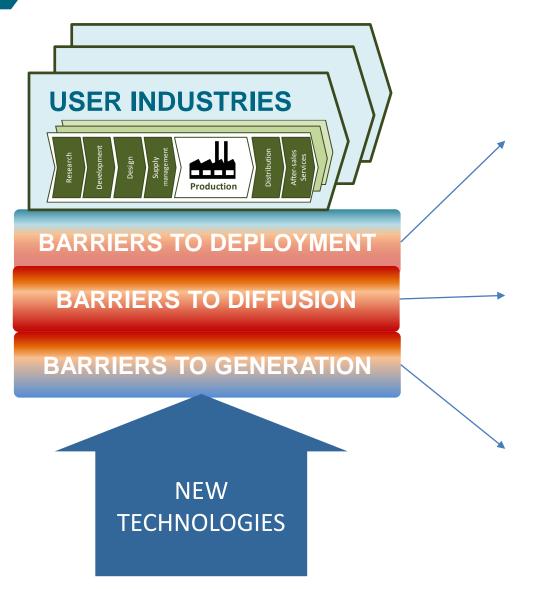
KNOWLEDGE DEPLOYMENT

KNOWLEDGE DIFFUSION

KNOWLEDGE GENERATION

Absorption and use of new digital technologies across business functions (including training, access to expertise and facilities, and new product development support)

Diffusion of new and existing knowledge and know-how (including standards, industrial networks, market intelligence)


Generating new digital technologies, tools and techniques (including basic and applied research and development activities)

WHAT WE OBSERVE IN PRACTICE...

- Low 'absorptive capacity', <u>especially SMEs</u>
- Legacy systems
- System integration challenges
- Etc.
- Infrastructure gaps
- Lack of standards
- Concerns from the public
- Etc.
- Multidisciplinarity of R&D
- Uncertainty of applications
- Disconnection between industry - academia
- Etc.

- About us
- Key messages
- Some key innovation frameworks

Key insights from international policy efforts

Conclusions

RECENT COLLABORATIONS

Emerging trends in global advanced manufacturing: CHALLENGES, OPPORTUNITIES AND POLICY RESPONSES

UNITED NATIONS INDUSTRIAL DEVELOPMENT ORGANIZATION

The Next Production

MPLICATIONS FOR GOVERNMENTS AND BUSINESS

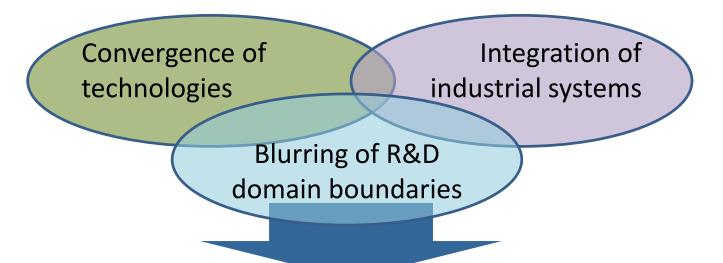
Revolution

OECD

XXX Donartr

Department for Business, Energy & Industrial Strategy

- Inputs to UK's 'Industrial Digitalisation Review (IDR)'
- Study on 'Policy implications from digitalisation of manufacturing' for Irish government



An Roinn Gnó, Fiontar agus Nuálaíochta Department of Business, Enterprise and Innovation

Implications of Next Production Revolution Trends Importance of linkages, partnerships, engagement

Greater emphases on linkages in R&D programmes, centre missions...

- New connections: <u>Industry</u>: shop floor, design, supply chains, vendors... <u>Research base</u>: Uni centres, RTOs, natl labs, metrology labs, business schools...
- **'Interdisciplinary' partnerships**: Emerging technology, novel production technology, operations management, 'smart systems'...
- Shared space: demonstration / scale-up facilities; user engagement, 'living labs'
- Shared visions: Foresight/roadmaps... Awareness / linkage-building exercises...

Manufacturing Innovation Challenges

Growing emphasis on quality and breadth of linkages

Uni–Institute–Industry Partnerships for innovation

New linkages, new partners, new spaces

- Novel centre-like endeavours linking universities, research institutes and industry
- New modes of engagement: Joint labs, joint appointments, researcher exchange, shared facilities, 'living labs'...
- Linkages with other innovation organisations: National metrology labs, standards organisations...

Manufacturing Innovation Challenges Linkages for accelerating 'Scale-up' Innovation

Examples of new effort/emphases on linkages:

- Intermediate R&D institutes / pilot line facilities to address 'manufacturability' scale-up challenges
- Anticipating further 'manufacturability' risks: Linkages to shop floor, supply chains, standards bodies, designers...
- Accelerating scale-up with digitalisation: multiscale-modelling and simulation tools, etc...

CAMBRID

Department of Engineering

National Network for Manufacturing Innovation

Manufacturing Innovation Challenges Linkages for enhancing productivity

Examples of new effort/emphases on linkages:

- Hybrid production technologies: Complex manufacturing systems with hybrid technologies and ICT to compete with low cost value chains
- 'Factories of the Future': Challengeoriented R&D, critical mass of partners, industry commitment, roadmaps
- Robotics: Manufacturing 'robots in the internet-of-things era': Embedded systems, AI, operations management...

Manufacturing Innovation Challenges Linkages for adaptability and efficiency

Examples of new effort/emphases on linkages:

- SME network / supply chain programmes: Systematic R&D, skills training and capital investment targeting supply chain environment
- Manufacturing 'infratechnologies': R&D underpinning advanced tools, metrology, simulation/modelling, etc...
- Digitalisation of SME 'ecosystems': R&D test beds, system demonstrators with components /subsystems; training, standards adoption; etc

Department of Engineering

Department for Business Innovation & Skills

Intelligente Technische Systeme

OstWestfalenLippe

- About us
- Key messages
- Some key innovation frameworks

Key insights from international policy efforts (programmes)

Conclusions

Mission: "To develop the *[manufacturing engineering-related]* human, intellectual and industrial capital in Singapore"

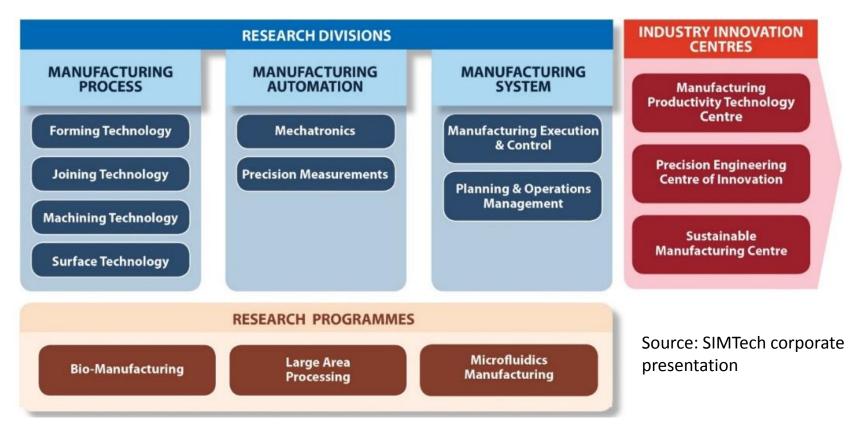
Total Staff: ~417 86% research scientists & engineers

Budget: ~US\$30m/yr

- 70% govt. grants
- 30% own income

Own income: Ind. projects: ~50% Licensing: ~30% Teaching: ~20% Research students PhD: 133 Masters: 45 Attachment stud.: 83

Roles:


- Boost the human capital base in Singapore through manpower development initiatives such as industry research collaborations and training programmes for industry.
- Generate, apply and commercialise R&D, advanced manufacturing science and technology by creating intellectual capital to enhance local industries' competitiveness.
- Enrich the industrial capital base from R&D collaborations outcome with the industry and the transfer of research results through technology training.

Mission: "To develop the *[manufacturing engineering-related]* human, intellectual and industrial capital in Singapore"

Representative Initiatives/Programmes

- Supplier development: Provision of technical manpower, equipment & facilities to help companies venture into high growth industries.
- Productivity training: Project-based courses in productivity improvement in combination of classroom sessions at SIMTech and practical sessions on site.
- Expert consultants: Expert consultants provide hands-on consultation to firms in a range of production technologies.
- Industry outreach and interest groups: Conferences, forums, seminars, workshops; overseas mission trips; annual conferences on key technologies

A • S T A R

Singapore Institute of Manufacturing Technology

Industry Development

Source: corpora present		> Gun I> Vacut	ing of Inconel, Ti, Drill of offset holes um Brazing n Moulding Capabilitie Developme	 MNC Halliburton Schlumberger Baker Hughes Cameron Applied Mat'l AMEC Medtronic Rolls-Royce Siltronic	Industries: Oil & Gas MedTech Devices Aeropsace Complex Equipment
	Ka Shin Swift precision Kim Ann Yangbum Fong Lee Metal AMT A & One Eratech Unicast MC-cast Univac Onn Wah Microcast Sanden Mencast PPS Moveon	PLC/SME Hup Futt ViQuest Technologies CEL Coating CFM Yong Chang Molding Sullzer Chem tech Disk Precision Long Tech Banshing Metaplas Wah Son CW Advanced Tech Sunny Metal Sanwa Plastic Sunningdale Fong's Engineering	Douyee Unisteel First Engineering Speedy Tech Jubilee Industries Yeakin Plastics Swiftronic Map Plastics Racer Tech Taiyo Technology Vigor Precision Disk Precision Long Tech Spindex MMI Meiban Group Component Tech	Seagate Maxtor HP Philips BD Baxter Shimano Dynacast Delphi Seiko Makino Infineon Sony NXP Panasonic ASM	Industries: Hard disk drive Consumer electronic Semicon MedTech consumables Precision Modules General Manufacturing Machinery

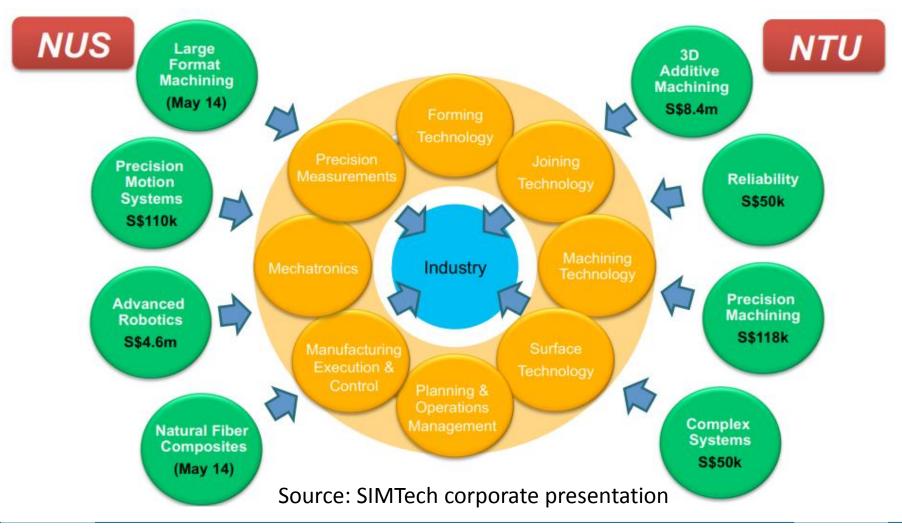
Education & Skills Development

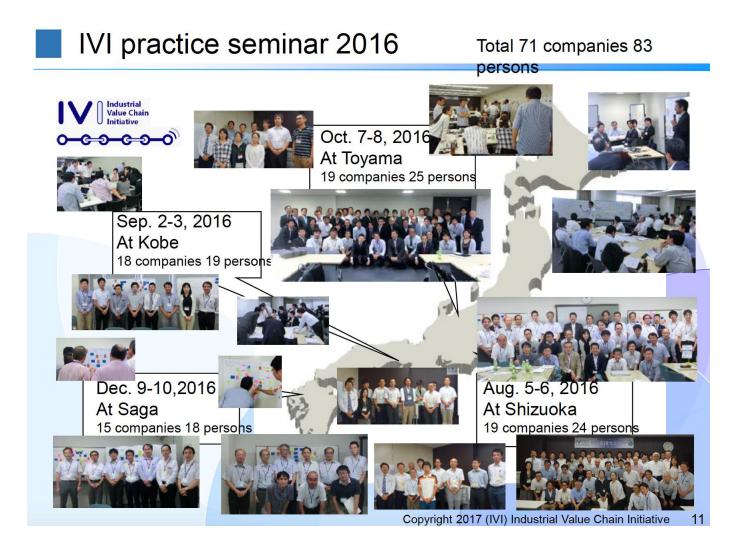
The Precision Engineering (PE) Workforce programme addresses the skills and qualifications needs of precision engineering professionals, managers, engineers, and technicians (PMETs).

Jointly developed by the Singapore Workforce Development Agency and SIMTech, the course offers hands-on practical training in cutting-edge PE technology, with the aim of upgrading participants skills and equipping them to take on advanced roles in the industry.

Source: SIMTech website

Tech


"SIMTech's training courses are unique as they are enhanced by case studies derived from our extensive experience in applying technologies to solve manufacturing problems for the local industry. The courses are conducted with hands-on practices in our state-of-the-art manufacturing research facilities. We are excited to share our knowledge and experience in the latest manufacturing technologies through these training courses to deepen the technologies expertise and skills of PMETS..."


Joint Laboratories with Local Universities

INDUSTRIAL VALUE CHAIN INITIATIVE (JAPAN)

UNIVERSITY OF CAMBRIDGE Department of Engineering

INDUSTRIAL VALUE CHAIN INITIATIVE (JAPAN)

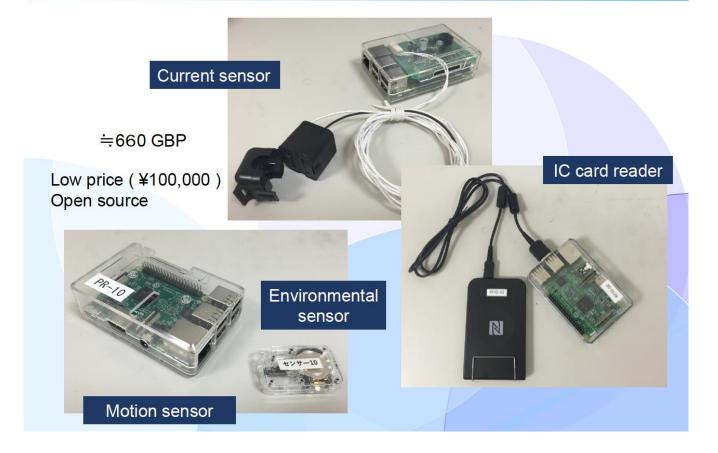
Scenario working groups and use cases 2016

- 2A01 Digitalization of process information and know-how on manufacturing
- 2A02 Connection of information on production preparation at design char 2B01 Utilization of robot program assets by CPS
- 2C01 Agile planning of production with real-time date
- 2001 Aglie planning of production with real-time da
- 2C02 Position control system for things at low cost
- 2D02 IoT to support workers in flexible manufact
- 2E01 Traceability of quality data
- 2E02 Real-Time Management of Quality Data
- 2F01 Promotion of CPS in supply chain with standard interfa
- 2F02 Promotion of CPS in supply chain with standard interface (shipping logistics)
- 2G01 Collaboration among companies through shared process information
- 2G02 Managing manufacturing progress and delivery time among plants
- 2H01 Sharing technical information for horizontal integration of SMEs
- 2H02 Horizontal integration of SMEs and visualization of process information
- 2H03 Service for SMEs to notice information on manufacturing progress
- 2J01 Manufacturing innovation for interactive growth between human and plant equipment
- 2K01 Predictive maintenance of presses and panel transportation devices
- 2K02 Inclusive PM / Predictive maintenance for All
- 2K03 Predictive maintenance system to detect signs of equipment abnormality at low cost
- 2L01-1 Smart maintenance with machine IoT data
- 2L01-2 Smart maintenance with digitalization of knowledge
- 2L04 Productivity improvement by visualization of equipment and workers
- 2L05 Mutual accommodation of facilities through shared production information
- 2L06 Managing Actual Operation Status of all Equipment in a Plant
- 2M01 Increasing added value of after-sales service

Copyright 2017 (IVI) Industrial Value Chain Initiative 6

Each WG has up to

different companies

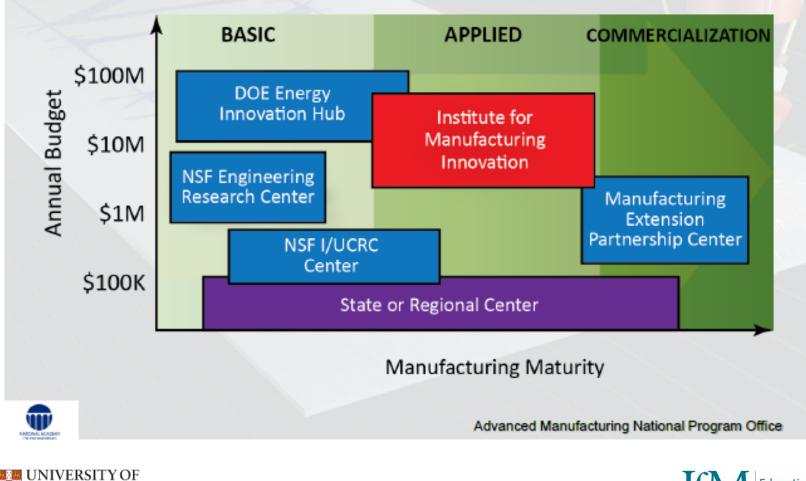

10 members from

INDUSTRIAL VALUE CHAIN INITIATIVE (JAPAN)

IoT Kit Configurations (recipe)

Low cost, high tech-solutions for the Internet-of-Things

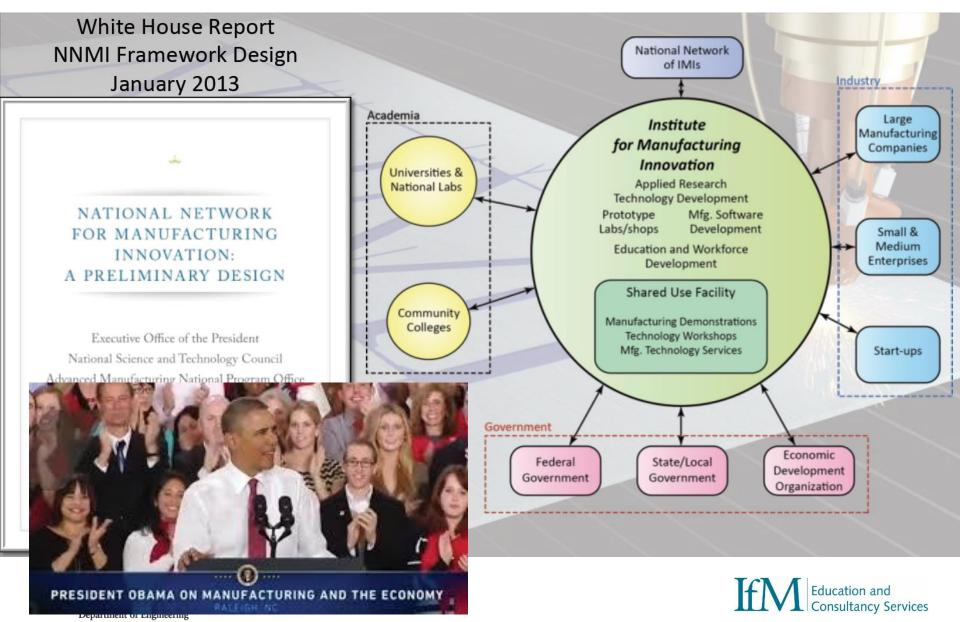
Products invented here, now made elsewhere - not driven by labor cost


Department of Engineering

SI

Focus on Scale Up – The Missing Middle

Basic science Largely government funded Commercialization private sector owned/funded


24

SI CA WBRIDVIRe (2013). Sparking a US Manufacturing Renaissance, Advanced Manufacturing Nation Program Education and Department of Engineering

US Policy: New Institutions

National Network of Manufacturing Innovation Institutes

Manufacturing USA has established 14 manufacturing innovation institutes

- About us
- Key messages
- Some key innovation frameworks
- Key insights from international policy efforts

Conclusions

INSIGHTS FROM INTERNATIONAL POLICY PRACTICE

Priorities

- R&D addressing manufacturing systems challenges
- **'Translational research'** for manufacturing scale-up
- R&D for 'sticky' manufacturing for high wage economies
- R&D informed by (big) data from whole manufacturing system

Programs (features)

- **Manufacturing innovation challenge goals:** New insights, new partnership combinations, diverse innovation functions (beyond R&D)
- **New linkages:** Uni centres, RTOs, national labs...; Industry: shop floor, design, supply chains, innovative vendors...
- **New interdisciplinarity:** Emerging tech, novel production tech, ops management, 'smart systems'...
- Shared space: demonstration / scale-up facilities, user engagement...
- Shared visions: Roadmaps, foresight exercises...

CONTACT DETAILS

Carlos López-Gómez cel44@cam.ac.uk

Institute for Manufacturing (IfM)

Department of Engineering 17 Charles Babbage Road Cambridge, CB3 0FS United Kingdom

