

REÚSO DE EFLUENTES PARA ABASTECIMENTO INDUSTRIAL: AVALIAÇÃO DA OFERTA E DA DEMANDA NO ESTADO DO RIO GRANDE DO NORTE

REÚSO DE EFLUENTES PARA ABASTECIMENTO INDUSTRIAL: AVALIAÇÃO DA OFERTA E DA DEMANDA NO ESTADO DO RIO GRANDE DO NORTE

CONFEDERAÇÃO NACIONAL DA INDÚSTRIA - CNI

Paulo Afonso Ferreira Presidente em exercício

Diretoria de Desenvolvimento Industrial

Carlos Eduardo Abijaodi Diretor

Superintendência de Relações Públicas

Ana Maria Curado Matta Superintendente de Relações Públicas

Diretoria de Educação e Tecnologia

Rafael Esmeraldo Lucchesi Ramacciotti Diretor

Diretoria de Políticas e Estratégia

José Augusto Coelho Fernandes Diretor

Diretoria de Relações Institucionais

Mônica Messenberg Guimarães Diretora

Diretoria de Servicos Corporativos

Fernando Augusto Trivellato Diretor

Diretoria Jurídica

Hélio José Ferreira Rocha Diretor

Diretoria CNI/SP

Carlos Alberto Pires Diretor

FEDERAÇÃO DAS INDÚSTRIAS DO ESTADO DO RIO GRANDE DO NORTE - FIERN

Presidente Amaro Sales de Araújo

1º Vice-Presidente

Pedro Terceiro de Melo

Vice-Presidentes

Antônio Thiago Gadelha Simas Neto Sílvio de Araújo Bezerra Silvio Torquato Fernandes Álvaro Coutinho da Motta Francisco Vilmar Pereira Sérgio Henrique Andrade de Azevedo Maria da Conceição R. D. Tavares

Diretor 1º Secretário

Heyder de Almeida Dantas

Diretor 2º Secretário

Djalma Barbosa da Cunha Júnior

Diretor 1º Tesoureiro

Roberto Pinto Serquiz Elias

Diretor 2º Tesoureiro

José Garcia da Nóbrega

Diretores

Antônio Leite Jales Carlos Vinícius Aragão Costa Lima Edilson Batista da Trindade Francisco Assis de Medeiros Francisco Ferreira Souto Filho Francisco Vilmar Pereira Segundo João Batista Gomes Lima Jorge Ricardo do Rosário José Zelito Nunes Marinho Herculano de Carvalho Geraldo Orlando Santos Gadelha Simas Pedro Alcântara Rego de Lima Ricardo Valença Gomes

Conselho Fiscal

Efetivos Francisco Pereira Soares Alberto Henrique Serejo Gomes Jorge José da Silva Bastos Filho Suplentes Gustavo Herique Calafange Motta Tennvson Brito Holder da Silva Euzim Alves dos Santos

Delegados Representantes junto à Confederação Nacional da Indústria

Efetivos Amaro Sales de Araújo Flávio José Cavalcanti de Azevedo Suplentes Antonio Thiago Gadelha Simas Neto Roberto Pinto Serquiz Elias

Superintendente Corporativo

Glaucio Ferreira Wanderley

Superintendente de Relações Institucionais e Mercado

Helder de Souza Maranhão

SESI/DR-RN **Superintendente Regional** Juliano Fernandes Martins

SENAI/DR-RN **Diretor Regional**

Emerson da Cunha Batista

IEL/RN

Superintendente Regional Maria Angélica Teixeira e Silva

REÚSO DE EFLUENTES PARA ABASTECIMENTO INDUSTRIAL: AVALIAÇÃO DA OFERTA E DA DEMANDA NO ESTADO DO RIO GRANDE DO NORTE

© 2019. CNI - Confederação Nacional da Indústria.

Qualquer parte desta obra poderá ser reproduzida, desde que citada a fonte.

CNI

Gerência Executiva de Meio Ambiente e Sustentabilidade - GEMAS

FICHA CATALOGRÁFICA

C748r

Confederação Nacional da Indústria.

Reúso de efluentes para abastecimento industrial: avaliação da oferta e da demanda no estado do Rio Grande do Norte / Confederação Nacional da Indústria, Federação das Indústrias do Estado do Rio Grande do Norte – Brasília: CNI, 2018.

100 p.: il.

ISBN: 978-85-7957-217-3

1. Reúso de Água. 2. Regulamentação. 3. Sustentabilidade I. Título.

CDU: 628.1

CNI

Confederação Nacional da Indústria **Sede**

Setor Bancário Norte Quadra 1 – Bloco C Edifício Roberto Simonsen 70040-903 – Brasília-DF

Tel.: (61) 3317-9000 Fax: (61) 3317-9994

http://www.portaldaindustria.com.br/cni/

Serviço de Atendimento ao Cliente - SAC

Tels.: (61) 3317-9989 / 3317-9992 sac@cni.org.br

"Assegurar o acesso sustentável à água de qualidade, em quantidade adequada à manutenção dos meios de vida, ao bem-estar humano e ao desenvolvimento socioeconômico. Garantir proteção contra a poluição hídrica e os desastres relacionados à água. Preservar os ecossistemas em um clima de paz e estabilidade política." Essa é a definição de segurança hídrica dada pela Organização das Nações Unidas (ONU), que explicita a preocupação atual com os conflitos em bacias hidrográficas nacionais e transfronteiriças.

A Confederação Nacional da Indústria (CNI) reconhece a necessidade de prevenir e minimizar os desentendimentos decorrentes do uso da água, assegurando, em especial, meios para reduzir os efeitos da sua falta na indústria, seja em função das mudanças climáticas, seja em razão da má gestão do insumo. O equacionamento desses aspectos é importante para manter o desenvolvimento das atividades do setor.

Em 2017, a CNI analisou o potencial do uso de efluentes tratados para abastecimento industrial na Região Metropolitana de São Paulo (RMSP), considerando que as águas servidas ou residuais podem ser transformadas em matéria-prima para a diversificação da matriz de oferta de água

no setor industrial. O estudo foi realizado em parceria com o Centro Internacional de Referência em Reúso de Água da Universidade de São Paulo e com a empresa InfinityTech.

Graças à parceria, foi possível chegar a valores de oferta de efluentes em relação à demanda industrial e fazer estimativas financeiras para viabilizar a utilização desse recurso. O estudo-piloto¹ identificou o potencial de ofertas de esgoto tratado por meio das Estações de Tratamento localizadas na RMSP e disponibilizadas pela Companhia Estadual de Saneamento Básico (Sabesp). O levantamento da demanda de água das indústrias considerou as unidades que se encontravam na área de até 10 km² em torno das estações.

Em função da situação crítica, especialmente com a severidade da escassez de água que confirma a baixa segurança hídrica atual, decidiu-se desenvolver a segunda etapa do estudo. Para isso, foram selecionados os estados do Ceará, Rio Grande do Norte, Paraíba, Pernambuco e Espírito Santo. Além deles, o Rio de Janeiro se dispôs a realizar o trabalho em parceria com a CNI, prevenindo-se quanto a eventuais riscos da falta d'água.

Neste momento, temos a satisfação de apresentar os resultados obtidos em Pernambuco. Com isso, esperamos contribuir para que tanto o setor industrial como o governo do estado possam desenvolver estratégias que promovam o acesso sustentável à água e o desenvolvimento socioeconômico.

Boa leitura.

Confederação Nacional da Indústria (CNI)

¹ Reuso de Efluentes: Metodologia para análise do potencial do uso de efluentes tratados para abastecimento industrial. Disponível em: http://www.portaldaindustria.com.br/publicacoes/2017/9/reuso-de-efluentes-metodologia-para-analise-do-potencial-do-uso-de-efluentes-tratados-para-abastecimento-industrial/

A água, indiscutivelmente, é uma prioridade estratégica, sob qualquer aspecto ou em qualquer debate.

Aprofundar o estudo quanto ao seu consumo consciente e sustentável, aproveitamento e reaproveitamento, é uma tarefa de todos nós, razão pela qual a Confederação Nacional da Indústria, a Federação das Indústrias do Estado do Rio Grande do Norte e a Comissão Temática de Meio Ambiente dedicaram esforços para compor o presente trabalho.

A publicação, que será fonte de consulta para ações efetivas, também vai ao encontro do que preconiza a Organização das Nações Unidas como definição de segurança hídrica: "assegurar o acesso sustentável à água de qualidade, em quantidade adequada à manutenção dos meios de vida, ao bem-estar humano e ao desenvolvimento socioeconômico. Garantir proteção contra a poluição hídrica e os desastres relacionados à água. Preservar os ecossistemas em um clima de paz e estabilidade política"

Em arremate, sintetizando o sentimento do Sistema Indústria, a Confederação Nacional da Indústria (CNI) "reconhece a necessidade de prevenir e minimizar os desentendimentos decorrentes do uso da água, assegurando, em especial, meios para reduzir os efeitos da sua falta na indústria, seja em função das mudanças climáticas, seja em razão da má gestão do insumo. O equacionamento desses aspectos é importante para manter o desenvolvimento das atividades do setor".

Assim sendo, com um sentimento que une preocupação a responsabilidade, temos a satisfação em apresentar a presente publicação "REÚSO DE EFLUENTES PARA ABASTECIMENTO INDUSTRIAL: AVALIAÇÃO DA OFERTA E DA DEMANDA NO ESTADO DO RIO GRANDE DO NORTE". É um gesto concreto para aprofundarmos os estudos necessários e aperfeiçoarmos a técnica de gestão dos recursos hídricos.

Amaro Sales de Araújo

Presidente da Federação das Indústrias do Estado do Rio Grande do Norte (FIERN)

LISTA DE TABELAS

TABELA 1 - SOLICITAÇÃO DE DADOS	18
TABELA 2 - FILTRO DE DADOS – OUTORGAS DA ANA	20
TABELA 3 - AGRUPAMENTO DE PROCESSOS DE TRATAMENTO	23
TABELA 4 - SEÇÕES CNAE 2.0 CONTEMPLADAS NO ESTUDO	26
TABELA 5 - FONTES DE DADOS – SÍNTESE	28
TABELA 6 - PRINCIPAIS INDICADORES DE ABASTECIMENTO DE ÁGUA E COLETA/TRATAMENTO DE ESGOTOS DO ESTADO DE ACORDO COM SNIS 2015	32
TABELA 7 - FONTE DE DADOS – DEMANDAS	35
TABELA 8 - FILTRO DE DADOS – OUTORGAS DO IGARN (ÁGUAS SUPERFICIAIS)	36
TABELA 9 - FILTRO DE DADOS – OUTORGAS DO IGARN (ÁGUAS SUBTERRÂNEAS)	37
TABELA 10 - NÚMERO DE OUTORGAS E VAZÕES OUTORGADAS	38
TABELA 11 - PRINCIPAIS MUNICÍPIOS EM TERMOS DE VAZÃO OUTORGADA DE CAPTAÇÃO INDUSTRIAL	40
TABELA 12 - DISTRIBUIÇÃO DAS OUTORGAS POR FONTE	41
TABELA 13 - OUTORGAS INDUSTRIAIS POR DIVISÃO DA CNAE 2.0	42
TABELA 14 - FONTE DE DADOS DE TRATAMENTO DE ESGOTOS	44
TABELA 15 - ETES E VAZÕES DE COLETA E TRATAMENTO DE ESGOTOS	44
TABELA 16 - ETES POR TIPO DE PROCESSO	45
TABELA 17 - DEZ PRINCIPAIS MUNICÍPIOS EM TERMOS DE VAZÃO DE TRATAMENTO DE ESGOTO	47
TABELA 18 - DEZ PRINCIPAIS MUNICÍPIOS EM TERMOS DE VAZÃO DE TRATAMENTO DE ESGOTO POR PROCESSO	48
TABELA 19 - DEZ PRINCIPAIS ETES DO ESTADO POR MUNICÍPIO, VAZÃO E PROCESSO	49
TABELA 20 - PIB INDUSTRIAL E VARIAÇÃO (2002-2014) POR MUNICÍPIO	50
TABELA 21 - NÚMERO DE EMPREGOS INDUSTRIAIS POR MUNICÍPIO	51
TABELA 22 - PRINCIPAIS DIVISÕES DA CNAE 2.0 EM NÚMEROS DE EMPREGOS	51
TABELA 23 - DISTRIBUIÇÃO DE EMPREGOS POR DIVISÃO CNAE 2.0 E MUNICÍPIO	54
TABELA 24 - NÚMERO DE ETES POR FAIXA DE VAZÃO INDUSTRIAL OUTORGADA NAS PROXIMIDADES	56
TABELA 25 - 20 MAIORES ETES E VAZÕES OUTORGADAS	57
TABELA 26 - ETES COM AS 20 MAIORES VAZÕES OLITORGADAS NO ENTORNO	59

	DEMANDA INDUSTRIAL E TRATAMENTO DE ESGOTO AGREGADOS	
	POR MUNICÍPIO	.64
TABELA 28 -	Q _{out} ' E TRATAMENTO DE ESGOTO AGREGADOS POR MUNICÍPIO	. 73
TABELA 29 -	CENÁRIOS PARA ESTIMATIVAS DE CUSTOS	. 79
TABELA 30 -	DADOS DE BASE PARA ESTIMATIVA DE CAPEX EM FUNÇÃO DA VAZÃO	. 80
TABELA 31 -	ESTIMATIVA DE CUSTOS PARA OBRAS LINEARES	. 83
	VALORES UTILIZADOS PARA COMPOSIÇÃO DE TARIFA MÉDIA DE ENERGIA ELÉTRICA	.84
TABELA 33 -	DADOS DE BASE PARA ESTIMATIVA DE OPEX EM FUNÇÃO DA VAZÃO	. 85
TABELA 34 -	CUSTOS ESTIMADOS RELATIVOS AO SISTEMA DE REÚSO COMPLETO	. 88
	RESUMO DOS CUSTOS ESTIMADOS DE CAPEX E OPEX PARA OS CENÁRIOS PROPOSTOS	.90

LISTA DE FIGURAS

FIGURA 1 - FLUXOGRAMA DE CRITÉRIOS PARA DETERMINAÇÃO DE Q _R (VAZÃO DE REFERÊNCIA) DAS ETES	24
FIGURA 2 - MAPA DE OUTORGAS INDUSTRIAIS POR CONCEDENTE	38
FIGURA 3 - MAPA DE OUTORGAS INDUSTRIAIS POR VAZÃO	39
FIGURA 4 - MAPA DE OUTORGAS INDUSTRIAIS POR VAZÃO E TOTALIZAÇÃO POR MUNICÍPIO	40
FIGURA 5 - MAPA DAS ETES EXISTENTES POR VAZÃO	45
FIGURA 6 - MAPA DAS ETES EXISTENTES POR PROCESSO	46
FIGURA 7 - MAPA DAS ETES EXISTENTES POR PROCESSO E ATENDIMENTO DE TRATAMENTO DE ESGOTOS POR MUNICÍPIO	47
FIGURA 8 - MAPA DO NÚMERO DE EMPREGOS INDUSTRIAIS E PIB INDUSTRIAL POR MUNICÍPIO	52
FIGURA 9 - MAPA DO NÚMERO DE EMPREGOS INDUSTRIAIS E PARTICIPAÇÃO DAS CINCO PRINCIPAIS DIVISÕES DA CNAE 2.0 NO ESTADO	53
FIGURA 10 - MAPA COM RAIO DE 10 KM EM TORNO DAS ETES EXISTENTES E OUTORGAS INDUSTRIAIS POR VAZÃO	55
FIGURA 11 - MAPA DE IDENTIFICAÇÃO DE OPORTUNIDADES E ATENDIMENTO DE TRATAMENTO DE ESGOTOS POR MUNICÍPIO	59
FIGURA 12 - MAPA DE IDENTIFICAÇÃO DE OPORTUNIDADES E ATENDIMENTO DE TRATAMENTO DE ESGOTOS POR MUNICÍPIO – PRINCIPAIS REGIÕES	60
FIGURA 13 - MAPA DE IDENTIFICAÇÃO DE OPORTUNIDADES E BALANÇO HÍDRICO QUANTITATIVO POR MICROBACIA	61
FIGURA 14 - MAPA DE IDENTIFICAÇÃO DE OPORTUNIDADES E BALANÇO HÍDRICO QUANTITATIVO POR MICROBACIA – PRINCIPAIS REGIÕES	61
FIGURA 15 - MAPA DE AGRUPAMENTO DAS ÁREAS DE INFLUÊNCIA DAS ETES POR MUNICÍPIO	72
FIGURA 16 - CUSTOS PRIMÁRIOS E MARGINAIS ASSOCIADOS AO REÚSO	76
FIGURA 17 - GRÁFICO DOS CUSTOS DE CAPITAL CORRESPONDENTES À ADAPTAÇÃO DE ETES EXISTENTES PARA PRODUÇÃO DE ÁGUA DE REÚSO (R\$/M³)	80
FIGURA 18 - GRÁFICO DOS CUSTOS DE OPERAÇÃO E MANUTENÇÃO CORRESPONDENTES À ADAPTAÇÃO DE ETES EXISTENTES PARA PRODUZIR ÁGUA DE REÚSO (R\$/M³)	86
FIGURA 19 - GRÁFICO DOS CUSTOS ESTIMADOS RELATIVOS AO SISTEMA	80

SUMÁRIO

INTRODUÇÃO	15
1 METODOLOGIA	17
1.1 ASPECTOS GERAIS	17
1.2 DEMANDAS INDUSTRIAIS	19
1.3 OFERTAS DE ESGOTO TRATADO	22
1.3.1 Processos de tratamento	
1.3.2 Vazão de referência (Q,)	
1.3.3 Coordenadas geográficas	
1.4 INDÚSTRIA	
1.5 IDENTIFICAÇÃO DE OPORTUNIDADES	
1.6 FONTES DE DADOS – SÍNTESE	
2 RIO GRANDE DO NORTE	
2.1 CARACTERIZAÇÃO GERAL DO ESTADO	
2.1.1 Disponibilidade hídrica, saneamento básico e indústria	
2.1.2 Legislação2.1.3 Iniciativas de reúso	
2.2 REUNIÕES PRESENCIAIS E SOLICITAÇÃO DE INFORMAÇÕES	
2.3 IDENTIFICAÇÃO DAS DEMANDAS INDUSTRIAIS	
2.4 IDENTIFICAÇÃO DAS OFERTAS	
2.5 PERFIL DA INDÚSTRIA	
2.6 OPORTUNIDADES DE REÚSO	
2.7 ANÁLISE E COMENTÁRIOS	
2.7.1 Agrupamento por município	
3 CUSTOS ATRIBUÍDOS A SISTEMAS DE REÚSO	
3.1 CONSIDERAÇÕES INICIAIS	
3.2 CONCEPÇÃO DO PROJETO GENÉRICO	
3.3 ESTIMATIVAS DE CAPEX	
3.3.1 Adaptação das estações de tratamento de lodos ativados	
3.3.2 Sistema elevatório e obras lineares	
3.3.2.1 Instalações elevatórias	
3.3.2.2 Linha de recalque e adutora por gravidade	
3.3.3 Reservatórios de distribuição	
3.4 ESTIMATIVAS DE OPEX	
3.4.1 Energia elétrica	
3.4.3 Sistema elevatório	
3.5 PLANO DE NEGÓCIO	
3.6 RESULTADOS	
3.7 RESUMO E COMENTÁRIOS	
REFERÊNCIAS	
ANEXO A – RESULTADOS POR ETE	

A segunda etapa do estudo **Reúso de efluentes para abastecimento industrial: avaliação da oferta e da demanda no estado do Rio Grande do Norte.** contempla avaliações mais profundas de cinco estados brasileiros selecionados na primeira etapa, a saber: Ceará, Rio Grande do Norte, Espírito Santo, Pernambuco e Paraíba¹. A seleção dos estados foi realizada pela Confederação Nacional da Indústria (CNI) com base em correlações entre características de escassez hídrica, estado da infraestrutura de coleta e tratamento de esgotos e possibilidade de atendimento a demandas industriais por água de reúso proveniente de ETEs municipais.

Como resultado da primeira etapa, a CNI lançou a publicação **Reúso de efluentes: metodologia para análise** do potencial do uso de efluentes tratados para abastecimento industrial (CNI, 2017)², a qual sumariza os principais resultados obtidos nessa etapa. Nesta segunda etapa, pretende-se, a partir dos aprendizados obtidos com o estudo anterior, ampliar e refinar a metodologia de identificação de oportunidades de reúso de efluentes sanitários tratados para abastecimento de demandas não potáveis industriais.

A identificação das oportunidades de reúso industrial foi realizada por meio de ferramentas de geoprocessamento e análise de bancos de dados obtidos via solicitação aos principais atores estaduais e federais pertinentes, buscando-se compreender quais são, para cada uma das regiões de estudo, as principais intersecções entre demandas industriais, ofertas potenciais de água de reúso e escassez hídrica, produzindo-se material de subsídio à tomada de decisão referente ao planejamento casado nas áreas de recursos hídricos, saneamento básico e desenvolvimento industrial.

Este volume aborda, sob os aspectos supramencionados, o estado do Rio Grande do Norte.

¹ Estudo do estado da Paraíba, ainda, em fase de refinamento de dados e elaboração.

² Disponível para download em: . Acesso em: 10 ago. 2018.

1.1 Aspectos gerais

O estado do Rio Grande do Norte foi visitado pela equipe de consultoria em março de 2017 e foram realizadas reuniões presenciais com os principais atores relevantes ao tema para apresentação dos resultados da primeira etapa e solicitação de informações necessárias ao prosseguimento do estudo. Em linhas gerais, foram solicitadas reuniões com os seguintes atores:

- Federação estadual da indústria.
- Concessionária de saneamento.
- · Agência ou companhia responsável por concessão de outorgas de uso de água.
- Órgão responsável pelo licenciamento ambiental.
- Secretaria de recursos hídricos.

Na primeira etapa do estudo, avaliaram-se todos os estados brasileiros e utilizou-se o estado de São Paulo como referência para determinação de uma metodologia de identificação de oportunidades. Essencialmente, a metodologia é composta por quatro etapas:

- Identificação das demandas: caracterização dos potenciais consumidores industriais de água de reúso, georreferenciamento e quantificação das vazões demandadas.
- Identificação das ofertas: caracterização quali-quantitativa dos sistemas de tratamento de esgotos já existentes e georreferenciamento das plantas.
- Caracterização da indústria: levantamento do perfil da indústria e sua distribuição espacial.
- 4) Identificação das oportunidades: avaliação conjunta dos dados das três etapas anteriores e identificação das áreas que apresentem maior viabilidade de aplicação da prática de reúso.

A seguir constam os principais órgãos contatados no estado do Rio Grande do Norte, a forma de solicitação de informações (se necessária) e o formato dos dados cedidos.

Tabela 1 - Solicitação de dados

Órgão	Informação requerida	Solicitação	Formato de dados
Igarn	Dados de outorgas	Ofício	xls
Caern	Dados de ETEs	Pessoal/ofício	pdf

Fonte: elaborado pelos autores (2018).

Uma vez que o estudo contempla, além do Rio Grande do Norte, outros estados, fez-se necessária homogeneização das informações, dado que os bancos de dados são substancialmente diferentes entre si e abrangem universos de informações muito distintos. Por isso, foi necessária a seleção das informações e criação de métricas únicas para estabelecimento de linguagem comum ao longo do estudo.

Há de se destacar que, entre o ato da solicitação de informações e o recebimento destas, por vezes, transcorreu-se o período de alguns meses, dado que nem sempre os órgãos possuíam os registros requeridos já organizados. Esse fato evidencia a importância e a dificuldade da elaboração de estudos que, como este, buscam dados primários para a realização de análises junto aos principais atores envolvidos no tema.

1.2 Demandas industriais

A identificação das demandas foi realizada por meio dos registros de outorgas de captação subterrâneas e superficiais concedidas por órgãos estaduais e pela Agência Nacional de Águas (ANA) para o setor industrial. Frisa-se que são conhecidas as limitações da utilização de tais dados para detecção das demandas, uma vez que é comum a prática de captações ilegais (isto é, não outorgadas) principalmente de águas subterrâneas, além do fato de a vazão outorgada ser geralmente superior à, de fato, demandada pelo usuário. No entanto, constatadas as limitações da utilização dos registros de outorgas, a opção por sua utilização é sustentada por:

- As vazões outorgadas, por serem superiores às reais retiradas, correspondem às potenciais demandas máximas de cada usuário e região. Portanto, este estudo, em razão de seu caráter de planejamento estratégico entre expansão/adequação da infraestrutura de saneamento básico, gestão de recursos hídricos e desenvolvimento industrial, utilizou dados de outorgas para estimativa do potencial de reúso.
- As outorgas são instrumentos de gestão de recursos hídricos utilizados por todos os estados brasileiros (águas subterrâneas e rios estaduais) e pela União (rios federais) e apresentam informações como vazão outorgada, tipo de usuário e coordenadas geográficas de cada ponto de captação, aspectos fundamentais ao georreferenciamento de dados e identificação, de acordo com a metodologia proposta, de oportunidades de reúso industrial.

Em relação às outorgas da ANA, foi utilizado o banco de dados disponibilizado no site da agência³, o qual contempla todas as Unidades da Federação (UFs). Os dados e filtros aplicados para seleção das informações pertinentes seguem na Tabela 2. Os filtros aplicados às outorgas estaduais (Instituto de Gestão das Águas do Estado do Rio Grande do Norte – Igarn) constam do **item 3.3**.

Tabela 2 - Filtro de dados – outorgas da ANA

Categoria	Universo de informações	Filtro aplicado	Utilizada?
Número do processo	-	-	N
Código no CNARH	Inscrição no CNARH	_	N
Declaração outorgada	-	-	N
Nome do requerente	Identificação do usuário	_	S
CPF/CNPJ	Identificação do usuário	-	N
Município	Nome do município	_	S
UF	Unidade da Federação	Rio Grande do Norte	S
Corpo hídrico	Corpo hídrico de captação ou lançamento	-	N
Região hidrográfica	Região hidrográfica	_	S
Finalidade principal	Abastecimento público, aquicultura, indústria, irrigação, criação de animais e outros	Indústria	S
Tipo de interferência	Captação, lançamento, uso não consuntivo	Captação	S
Latitude	Coordenadas geográficas	_	S
Longitude	Coordenadas geográficas	-	S
Resolução	Legislação pertinente	_	N
Data de publicação	_	_	N
Data de vencimento	_	Somente vigentes	S
Categoria	Status da outorga	Todos menos revogação, suspensão, indeferido, cancelamento e uso de pouca expressão	s
Volume anual	Volume anual outorgado em m³	-	S
Método de irrigação	_	-	N
Cultura irrigada	_	_	N
Vazão (I/s)	Vazão em I/s outorgada	-	N
Dias/mês	Dias por mês em que a captação é permitida	-	N

Categoria	Universo de informações	Filtro aplicado	Utilizada?
Horas/dia	Horas por dia em que a captação é permitida	-	N
Concentração de DBO (mg/l)		-	N
Carga máxima de DBO (kg/dia)		-	N
Q indisponível DBO (m³/h)		-	N
Concentração de P (mg/l)	Informações relativas a outorgas de Iançamento	-	N
Carga máxima de P (kg/dia)		-	N
Q indisponível P (m³/h)		-	N
°C		-	N
Q indisponível T (m³/h)		-	N
URL	Link para download da resolução de concessão de outorga para cada usuário	-	N
Data de extração	Data de extração dos dados	-	N

Fonte: adaptado de ANA (2017b).

Ressalta-se que as outorgas da ANA apresentam valores de volume anual (m^3) e vazões (l/s), estas com especificação de horas/dia e dias/mês para captação. Foi utilizado, para obtenção de vazão média ao longo do ano, o volume anual dividido pelo número de segundos do ano $(86.400 \text{ s/dia} \times 365 \text{ dias/ano})$.

Em 2017, a ANA publicou o estudo **Água na indústria: uso e coeficientes técnicos** (ANA, 2017a), a qual apresenta estimativas de vazões demandadas e consumidas pelo setor industrial por município e por classe da Classificação Nacional de Atividades Econômicas (Cnae) 2.0. Em suma, o cálculo é realizado com base em coeficientes técnicos que relacionam demanda de água por funcionário por dia aplicados aos registros de número de empregos do RAIS. Uma vez que a ANA optou pela utilização de dados de número de empregos industriais de acordo com a Relação Anual de Informações Sociais (Rais), a qual os apresenta agregados por

município, as vazões estimadas não cumprem os objetivos deste estudo, visto que se pretende realizar análise por ponto de consumo, e não em escala municipal somente. Ainda assim, as informações da ANA serão discutidas ao decorrer do estudo quando houver pertinência.

1.3 Ofertas de esgoto tratado

As potenciais ofertas de esgoto foram identificadas por meio de registros de bancos de dados de Estações de Tratamento de Esgotos (ETEs) existentes e futuras fornecidos pela ANA e pela Companhia de Águas e Esgotos do Rio Grande do Norte (Caern). Foram principalmente analisadas as informações de processo de tratamento, vazões e localização.

Ainda que a Caern tenha disponibilizado banco de dados de suas estações, as informações constantes neste não eram suficientes para inclusão no estudo, uma vez que não foram disponibilizados dados de vazão e localização de cada planta. Por isso, para o caso do estado do Rio Grande do Norte, as informações de oferta de esgoto foram obtidas somente a partir do banco de dados da ANA.

1.3.1 Processos de tratamento

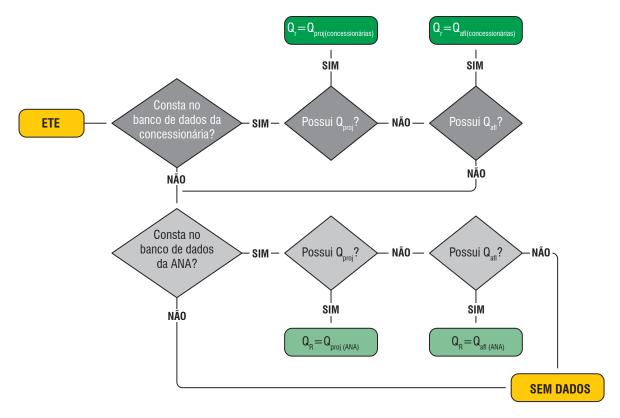
De modo a se homogeneizar a linguagem adotada para análise das ETEs, realizou-se agrupamento dos distintos processos registrados pela ANA. O critério utilizado foi a semelhança de infraestrutura requerida e a qualidade do efluente final tratado. Não há dúvidas de que a qualidade dos efluentes tratados resultantes, por exemplo, de sistema australiano (lagoa anaeróbia seguida de facultativa) é diferente daquela de lagoas anaeróbias somente, ou lodos ativados com nitrificação e desnitrificação e lodos ativados convencional precedido de reator UASB (*Upflow Anaerobic Sludge Blanket*). No entanto, o agrupamento tem como objetivo simplificar a categorização dos mais de 30 processos apresentados nos bancos de dados e permitir a classificação do estágio de desenvolvimento de infraestrutura de tratamento de esgotos de cada município e do estado como um todo. Adotou-se critério conforme a Tabela 3, em que estão listados os agrupamentos e os principais processos contemplados.

Tabela 3 - Agrupamento de processos de tratamento

Agrupamento	Processos
	Convencional
	Aeração prolongada
Lodos ativados	Com nitrificação e desnitrificação
	Lodos ativados precedido de UASB
	UASB + lagoas
	UASB + filtro biológico percolador
UASB + polimento	UASB + biofiltro aerado submerso
	UASB + filtro aerado submerso
	Aeróbia + decantação + maturação
	Aeróbia + decantação
	Anaeróbia + facultativa + maturação
Lagoas	Anaeróbia + facultativa
	Facultativa + maturação
	Facultativa
	Anaeróbia
11400	Somente reator UASB
UASB	Reator UASB + cloração
E () () ()	Fossa séptica + filtro anaeróbio
Fossa séptica + filtro anaeróbio	Decanto-digestor + filtro anaeróbio
	Estação de precondicionamento
Preliminar/primário	Decantação primária
	Tanque Imhoff
Outros	Não especificados/não informados

Fonte: elaborado pelos autores (2018).

1.3.2 Vazão de referência (Q_r)


De maneira a se trabalhar com uma variável única para estimativa das ofertas de esgoto tratado, optou-se pela criação da grandeza vazão de referência, expressa por Q_r. O banco de dados da ANA apresenta tanto dados de vazão de projeto quanto de afluente, mas a análise mais detida dos dados revela que diversas ETEs constam com vazão de projeto nula e afluente diferente de zero, ou por vezes vazão afluente superior à de

projeto. Sendo assim, a $\mathbf{Q}_{\rm r}$ para cada ETE foi determinada segundo os seguintes critérios:

- Foram utilizados, prioritariamente, os dados de vazão de projeto fornecidos pela concessionária.
- Para ETEs que constam somente do banco de dados da ANA, foram utilizadas as vazões de projeto desta.
- 3) Para as ETEs do banco de dados da ANA em que a vazão de projeto é nula e a afluente é diferente de zero, $Q_r = Q_{afluente}$.
- 4) Para as ETEs listadas em ambos os bancos de dados, foram usados prioritariamente os dados da concessionária, conforme critério 1. Caso não houvesse indicação de vazão pela concessionária, foram utilizados os valores do banco de dados da ANA, conforme critério 3.

O fluxograma a seguir exemplifica os critérios acima listados.

Figura 1 - Fluxograma de critérios para determinação de $\mathbf{Q}_{_{\mathrm{r}}}$ (vazão de referência) das ETEs

Elaboração: Fukasawa (2017).

Optou-se pelo uso prioritário da vazão de projeto e não da afluente pelo fato de a vazão de projeto representar as capacidades máximas de tratamento das ETEs, o que, assim como no caso das outorgas, é mais aderente ao escopo de planejamento estratégico do presente estudo.

1.3.3 Coordenadas geográficas

A utilização de dados de coordenadas seguiu critério análogo ao das vazões, com priorização de dados da Caern. Na indisponibilidade destes, ou para ETEs que constam somente do banco de dados da ANA, foram utilizados dados da agência.

1.4 Indústria

A caracterização do perfil da indústria foi realizada com base em critérios de distribuição de empregos por município de acordo com as divisões da Cnae 2.0 e o produto interno bruto (PIB) industrial de cada município. Buscou-se, junto ao Instituto Brasileiro de Geografia e Estatística (IBGE), a obtenção de dados de produção industrial provenientes da Pesquisa Industrial Mensal (PIM). No entanto, foi afirmado pelo instituto que não é possível a cessão de dados desagregados (isto é, por município ou indústria), dado que são confidenciais. Por isso, optou-se por utilização de dois bancos de dados, ambos disponíveis ao público, a saber:

- PIB dos municípios, do IBGE.
- Rais, do Ministério do Trabalho e Emprego (MTE).

Os dados de PIB dos municípios são disponibilizados na plataforma Sidra⁴ (Sistema IBGE de Recuperação Automática), sendo possível a solicitação de envio de arquivos digitais das informações necessárias. Foram requeridos somente os dados referentes ao PIB total municipal (PIB a preços correntes) e ao PIB industrial (valor adicionado bruto a preços correntes da indústria), ambos expressos em R\$ 1.000. As informações são enviadas por e-mail em arquivo formato xls.

Os dados do Rais foram obtidos a partir do servidor *ftp* de microdados⁵ do MTE. Em razão da quantidade de registros, as informações foram analisadas e filtradas em *softwares* específicos de banco de dados. Foram selecionados somente os dados referentes às divisões da Cnae 2.0 pertinentes e vínculos empregatícios ativos até 31/12/2015, última data disponível no registro.

O MTE também disponibiliza arquivos com resultados agregados do Rais por estado⁶. No entanto, para cada estado, o nível de detalhamento das informações agregadas é distinto, não havendo caracterização por município para todas as UFs. Adicionalmente, é apresentado somente o número de empregos industriais por seção da Cnae 2.0 (indústrias extrativas, indústrias de transformação etc.), sem detalhamento das divisões. Portanto, optou-se pela utilização dos microdados supracitados em detrimento das informações agregadas publicadas pelo MTE.

Para contabilização dos empregos industriais, foram consideradas todas as atividades das seguintes seções Cnae 2.0.

Tabela 4 - Seções Cnae 2.0 contempladas no estudo

Seção Cnae 2.0	Descrição
В	Indústrias extrativas
С	Indústrias de transformação
D	Eletricidade e gás

Fonte: adaptado de IBGE (2017c).

1.5 Identificação de oportunidades

Com base nas informações analisadas nos itens anteriores, as oportunidades de reúso industrial no estado foram identificadas a partir dos seguintes procedimentos:

⁵ Disponível em: <ftp://ftp.mtps.gov.br/pdet/microdados/>. Acesso em: 5 fev. 2018.

⁶ Disponível em: http://pdet.mte.gov.br/rais. Acesso em: 7 jan. 2018.

- Georreferenciamento das demandas por água com base nas vazões outorgadas, classificação de acordo com a tipologia da Cnae 2.0 e coordenadas geográficas.
- Georreferenciamento das ofertas de esgoto por ETE, considerando a Q_r (vazão de referência), o tipo de tratamento e as coordenadas geográficas.
- 3) Georreferenciamento, por município, do índice de atendimento de esgoto de acordo com informações do Sistema Nacional de Informações sobre Saneamento (SNIS) 2015.
- 4) Delimitação de área de influência de raio de 10 km em torno das ETEs e cômputo das outorgas dentro da área.
- 5) Sobreposição dos resultados de oferta de esgoto e demandas industriais a informações de índice de atendimento de tratamento de esgotos do SNIS 2015 (SNSA/MCIDADES, 2016) e balanço hídrico quantitativo (ANA, 2017d).

Para avaliação do potencial de reúso no entorno de cada ETE, foi utilizada a relação vazão proporcional, representada pela razão entre a vazão total outorgada dentro da área (Q_{out}) e a vazão de referência da ETE (Q_r) . Valores de Q_{out}/Q_r superiores a 1, por exemplo, indicam que as demandas industriais próximas superam a vazão da planta, demonstrando importante potencial de reúso.

Foram avaliadas as ETEs mais importantes do ponto de vista de vazão de referência e vazões industriais outorgadas nas proximidades, buscando-se tanto a avaliação das demandas próximas às maiores ETEs, como das estações que possuem as maiores demandas industriais em seu entorno.

Todas as análises e produtos de geoprocessamento foram elaborados utilizando-se o *software* livre QGIS⁷ e arquivos vetoriais do banco de dados do IBGE e do Geobank para base territorial.

1.6 Fontes de dados - síntese

Em síntese, foram utilizadas neste estudo as seguintes principais fontes de dados para as etapas de caracterização, mapeamento das ofertas e demandas e identificação de oportunidades de reúso industrial.

Tabela 5 - Fontes de dados - síntese

Grupo	Informações	Escala	Fonte	Complementação	Ano-base
Saneamento básico	Dados sobre ETEs	Por ETE	ANA (2016)	Banco de dados fornecido diretamente pela ANA	2013
		Por ETE	Concessionárias locais	Banco de dados fornecidos diretamente pelas concessionárias	2017
	Dados sobre produção e consumo de água e coleta e tratamento de esgotos	Por município	SNIS (SNSA/ MCIDADES, 2016)	Ano-base 2015	2016
Indústria	Demanda industrial por água	Por ponto outorgado	ANA (2017b)	Para rios de domínio da União	2017
		Por ponto outorgado	Agências estaduais	Para mananciais (superficiais e subterrâneos) de domínio estadual	2017
		Por município	ANA (2017a)	Demanda hídrica por município	2017
	PIB industrial	Por município	IBGE (2017b) PIB dos municípios 2002- 2014		2015
	Número de empregos na indústria	Por município	MTE (2017a)	Microdados Rais e Caged	2016
	Caracterização da indústria no estado	Por estado/ município	Federações da indústria	Solicitado diretamente às federações	Diversos

⁷ QGIS – Geographic Information System. Open Source Geospatial Foundation Project. Download disponível em: https://www.qgis.org/pt_BR/site/.

Grupo	Informações	Escala	Fonte	Complementação	Ano-base
Disponibilidade hídrica	Balanço hídrico quantitativo	Por microbacia	ANA (2017d)	SNIRH	2017
Demografia e território	Dados demográficos e territoriais	Por município	IBGE (2017a)	-	2017
	Shapefiles para uso em SIG	Por unidade administrativa	IBGE e Geobank	-	-

Fonte: elaborado pelos autores (2018).

2.1 Caracterização geral do estado

2.1.1 Disponibilidade hídrica, saneamento básico e indústria

O Rio Grande do Norte, localizado no extremo Nordeste do Brasil, é o décimo estado mais populoso do país com população de 3.519.000 habitantes distribuída em área de 52.811 km², compondo cerca de 3,4% da área correspondente à região Nordeste e 0,6% do território Nacional (IBGE, 2017a). É dividido em 167 municípios, sendo os mais populosos: Natal, Mossoró, São Gonçalo do Amarante, Macaíba, Ceará-Mirim, Caícó, Assu, Currais Novos e São José de Mipibu. A Região Metropolitana de Natal (RMN) é composta por nove municípios e concentra quase 50% da população do estado.

O estado está localizado na Região Hidrográfica do Atlântico Nordeste Oriental, que se caracteriza por temperaturas elevadas e períodos prolongados de estiagem ao longo do ano. Além disso, as precipitações anuais médias permanecem em torno de 700 mm e há intermitência da rede hidrográfica, o que, aliada à demanda crescente por água, agrava, em algumas regiões do estado, os problemas associados à escassez de recursos hídricos.

De acordo com o Programa de Consolidação do Pacto Nacional pela Gestão das Águas – Progestão (ANA, 2017c), programa de incentivo financeiro aos sistemas estaduais para aplicação exclusiva em ações de gerenciamento de recursos hídricos da ANA, o estado do Rio Grande do Norte se enquadra na tipologia "B", uma vez que apresenta:

Balanço quali-quantitativo satisfatório na maioria das bacias; usos concentrados em algumas poucas bacias com criticidade quali-quantitativa (áreas críticas) (ANA, 2017c).

O sistema de gestão de Recursos Hídricos de Rio Grande do Norte é dividido em quatro Comitês de Bacias e 14 Unidades Estaduais de Gestão de Recursos Hídricos.

Dos 167 municípios que compões o estado, 155 possuem contrato de concessão com a Companhia de Águas e Esgoto do Rio Grande do Norte (Caern) e os 13 restantes são têm seus sistemas de água e esgoto administrados por Serviços Autônomos de Água e Esgoto (SAAE) ou pelas prefeituras.

Em relação à coleta de esgoto, dentre os estados do Nordeste, Rio Grande do Norte é o que apresenta o menor índice de cobertura, cerca de 26%. Além de apresentar índices baixos de coleta, aqueles associados ao tratamento de esgoto também são bastante reduzidos, apenas 22,4%. Com relação ao abastecimento de água, o Rio Grande do Norte é o terceiro estado da região Nordeste atendendo 79,6% da população total e 96% da população urbana.

Tabela 6 - Principais indicadores de abastecimento de água e coleta/ tratamento de esgotos do estado de acordo com SNIS 2015

Código	Índice	Valor (%)
IN055	Índice de atendimento total de água	79,5
IN023	Índice de atendimento urbano de água	96,0
IN015	Índice de coleta de esgoto	26,0
IN046	Índice de esgoto tratado referido à água consumida	22,4

Fonte: adaptado de SNSA/MCidades (2016).

Referentemente à indústria, o PIB industrial do Rio Grande do Norte é o 5º maior da região Nordeste e 18º do país, somando R\$ 8,3 bilhões em 2014. Os setores que possuem maior representatividade são o de extração de petróleo e gás natural, alimentos e extração de minerais não metálicos, os quais, juntos, representam 49% da indústria estadual (CNI, 2014).

2.1.2 Legislação

A seguir constam as principais legislações estaduais referentes aos temas pertinentes a este estudo.

Lei nº 6.908/1996 – Política Estadual de Recursos Hídricos: dispõe sobre a Política Estadual de Recursos Hídricos, institui o Sistema Integrado de Gestão de Recursos Hídricos (SIGERH). Entre os principais objetivos desta lei está assegurar que a água possa ser controlada e utilizada em padrões de quantidade e qualidade satisfatórios por seus usuários atuais e pelas gerações futuras, priorizando o consumo humano.

A Política Estadual de Recursos Hídricos, entre outros instrumentos, estabelece a outorga e a cobrança pelo uso da água, visando à utilização racional das fontes superficiais e subterrâneas e à proteção das águas contra ações que possam comprometer seus usos atuais e futuros. A lei dá origem também ao Fundo Estadual de Recursos Hídricos (Funerh) para financiamento e custeio de projetos associados:

- Ao desenvolvimento, conservação, uso racional e sustentável, controle e proteção dos recursos hídricos superficiais e subterrâneos.
- Execução de obras e serviços com vistas a desenvolvimento, conservação, uso racional e sustentável, controle e proteção dos recursos hídricos superficiais e subterrâneos.
- Programas e estudos com vistas à capacitação de recursos humanos, pesquisas e desenvolvimento tecnológico de interesse da gestão dos recursos hídricos.

Lei Complementar nº 481/2013: altera a Lei Estadual nº 6.908, que dispõe sobre a Política Estadual de Recursos Hídricos, acrescentando, dentre outras coisas, o enquadramento dos corpos d'água de acordo com os

usos preponderantes, o estabelecimento de financiamento, por meio do Funerh, para estudos relacionados à utilização da água de reúso e seus efeitos sobre os recursos hídricos.

No artigo 15 da Lei nº 6.908, que trata da obrigatoriedade do licenciamento das obras e da outorga do direito de uso da água pelos órgãos competentes, a Lei Complementar (LC) nº 481 acrescenta em seu parágrafo terceiro que:

A Secretaria do Meio Ambiente e dos Recursos Hídricos

– SEMARH incentivará o reúso de água, devendo estabelecer os instrumentos regulatórios e de incentivo às diversas
modalidades de reuso, bem como os estudos necessários à
garantia de padrões mínimos de qualidade da água.

2.1.3 Iniciativas de reúso

Mesmo que algumas regiões do estado rio-grandense do norte apresentem escassez severa de recursos hídricos, a prática do reúso de água ainda é bastante incipiente, principalmente aquela associada à indústria. O caso mais expressivo de reúso no Rio Grande do Norte é o da Coteminas, indústria têxtil instalada em São Gonçalo do Amarante que reutiliza cerca de 50% da água utilizada no processo produtivo.

2.2 Reuniões presenciais e solicitação de informações

A visita ao estado ocorreu entre os dias 16 e 17 de março de 2017 e contou com consultores do Centro Internacional de Referência em Reúso de Água da Universidade de São Paulo (Cirra/USP) e da InfinityTech Engenharia e Meio Ambiente. Foram realizadas reuniões com os seguintes órgãos e seus respectivos representantes.

- CAERN: Companhia de Água e Esgoto do Rio Grande do Norte:
 - Maria Geny Formiga de Farias diretora de Empreendimentos.
- IGARN: Instituto de Gestão das Águas do Estado do Rio Grande do Norte:
 - Josivan Cardoso diretor presidente.

- IDEMA: Instituto de desenvolvimento Sustentável e Meio Ambiente do Rio Grande do Norte:
 - Rondinelli Silva Oliveira diretor-geral.
- SEMARH: Secretaria de Estado de Meio Ambiente e Recursos Hídricos:
 - José Mairton Figueiredo França secretário adjunto.
- FIER N: Federação das Indústrias do Estado do Rio Grande do Norte:
 - Pedro Albuquerque assessor técnico.
 - Bhaskara Canan técnico.
 - Rilke dos Santos Silva assessor da Diretoria de Operações.
 - Roberto Serquiz diretor tesoureiro.
 - Sandra Lúcia Barbosa Cavalcanti gerente da Unidade de Economia e Estatística.

2.3 Identificação das demandas industriais

As demandas industriais por água no estado foram mapeadas a partir de duas fontes: registros de outorgas de uso concedidas pelo Igarn e outorgas de uso de água de rios de domínio da União da ANA. Os dados do Igarn não são disponibilizados ao público e foram solicitados pessoalmente ao diretor presidente do órgão, com posterior envio de arquivo digital em formato xls.

Tabela 7 - Fonte de dados - demandas

Informação	Fonte	Ano-base	Obtido via
Registros de outorgas de uso de água	lgarn (2017)	2017	Diretamente pelo Igarn
Registros de outorgas de uso de água de rios de domínio da União	ANA (2017b)	2017	https://goo.gl/eDFwc4

Fonte: elaborado pelos autores (2018).

Os registros do Igarn são separados em outorgas de uso subterrâneas e superficiais, cada qual com campos distintos de informações. Os filtros aplicados foram os seguintes.

Tabela 8 - Filtro de dados - outorgas do Igarn (águas superficiais)

Categoria	Universo de informações	Filtro aplicado	Utilizada?
	lgarn – superi	iiciais	
Nome do requerente	Identificação do	_	S
CPF/CNPJ	usuário	_	N
Município	Nome do município	_	S
Bacia hidrográfica	Bacia hidrográfica	_	S
Nº do processo		_	N
Nº da outorga	Identificação do	_	N
Renovação (categoria)	processo	-	N
Data expedida	Data de concessão e	Composto viscontos	S
Data validade	vencimento	Somente vigentes	S
Nº de pontos	Número de pontos de captação outorgados no mesmo processo	-	s
Local de captação	Identificação do corpo hídrico	-	S
Fonte	Identificação do aquífero	-	N
Finalidade	Industrial, abastecimento humano, carcinicultura, aquicultura, irrigação etc.	Industrial	S
Observação	Identificação da fonte	_	N
Área irrigada (ha)	-	-	N
Vazão total outorgada (m³/dia)	Vazão concedida	-	S
UTM X	Coords	-	S
UTM Y	- Coordenadas	-	S
Nº declaração Cnarh	-	-	N
Condic.	-	-	N
Data de publicação	Identificação do processo	-	N

Fonte: adaptado de Igarn (2017).

Tabela 9 - Filtro de dados - outorgas do Igarn (águas subterrâneas)

Categoria	Universo de informações	Filtro aplicado	Utilizada?
	lgarn – subter	râneas	
Nome do requerente	Identificação do usuário	-	S
CPF/CNPJ	usuano	_	N
Município	Nome do município		S
Bacia hidrográfica	Bacia hidrográfica		S
Nº do processo			N
Nº de outorga	Identificação do processo		N
Renovação	·		N
Data expedida	Data de concessão e	Comenta vigantes	S
Data validade	vencimento	Somente vigentes	S
Número de poços Nº de pontos outorgados no mesmo processo		_	S
Local de captação	Identificação do corpo hídrico	_	N
Fonte	ldentificação do aquífero	-	N
Finalidade	Industrial, abastecimento humano, carcinicultura, aquicultura, irrigação etc.	Industrial, humano/ industrial, humano/ industrial/irrigação, industrial/irrigação	s
Finalidade_2	Identificação das parcelas outorgadas para diferentes finalidades (industrial, irrigação e abastecimento humano).	Somente as parcelas industriais	S
Total vazão (m³/dia)	Vazão concedida	_	S
UTM E (m)	Coordonadas	_	S
UTM N (m)	Coordenadas	_	S
Nº declaração CNARH		-	N
Condic.	-	-	N
Data de publicação	_	-	N

Fonte: adaptado de Igarn (2017).

Os filtros aplicados às outorgas federais (ANA) são os mesmos constantes na Tabela 2.

O Igarn identifica o caso de haver mais de um ponto de captação para a mesma outorga concedida. Em geral, cada outorga corresponde a um ponto, mas há situações em que a mesma outorga contempla até dez poços (no caso de subterrâneas), havendo indicação somente da vazão total outorgada. Como os distintos pontos de cada outorga localizam-se praticamente nas mesmas coordenadas, a análise foi realizada somente por outorga.

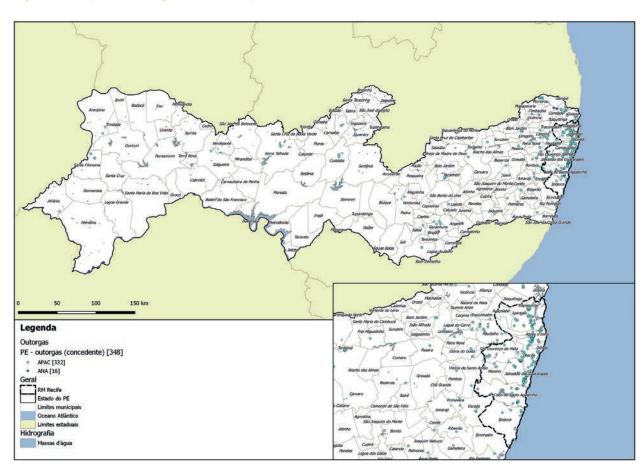

Resultaram dos filtros aplicados 159 outorgas do Igarn e 13 da ANA, com as seguintes vazões totais.

Tabela 10 - Número de outorgas e vazões outorgadas

Concedente	N° de outorgas	ΣQ (I/s)
lgarn	159	785,5
ANA	13	208,8
Total	222	994,3

Fonte: adaptado de ANA (2017b) e Igarn (2017).

Figura 2 - Mapa de outorgas industriais por concedente

Fonte: ANA (2017b) e Igarn (2017). Elaboração de Fukasawa (2017).

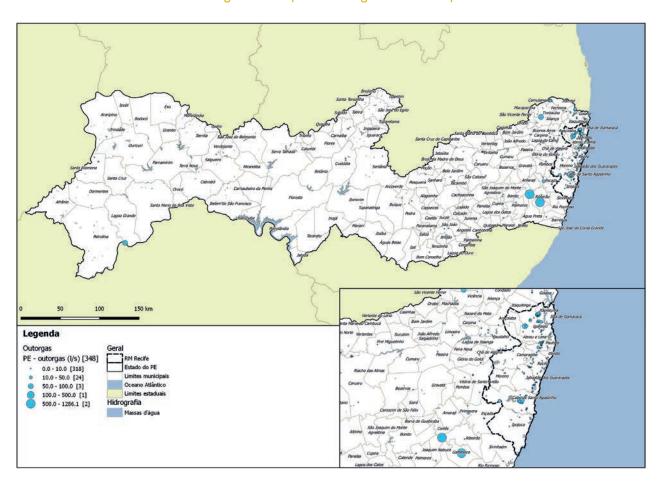


Figura 3 - Mapa de outorgas industriais por vazão

Fonte: ANA (2017b) e Igarn (2017). Elaboração: Fukasawa (2017).

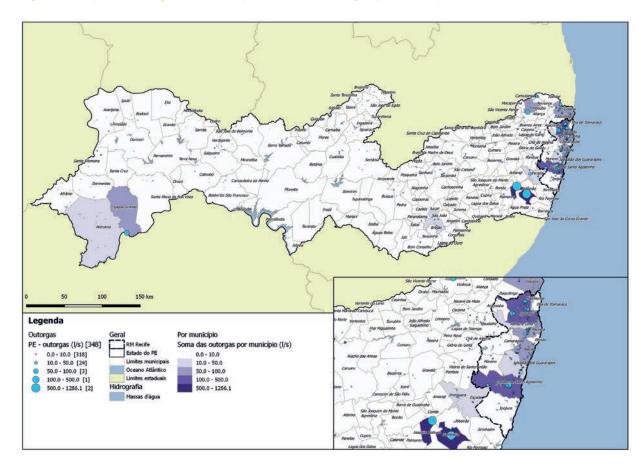

Realizando-se a análise por município, dos 167 existentes no estado, apenas 43 possuem algum registro de outorga de captação industrial. A seguir são listados os dez municípios com maiores vazões outorgadas para a indústria e o número de outorgas, assim como a representatividade, diante de todo o estado, de cada município. Adicionalmente, consta também a razão vazão outorgada/número de outorgas ($\Sigma Q/n^\circ$ de outorgas), a qual representa a vazão média por outorga e indica, de maneira geral, a dispersão das vazões demandadas dentro de cada município.

Tabela 11 - Principais municípios em termos de vazão outorgada de captação industrial

Município	N° de outorgas	Q (I/s)	% em nº de outorgas	% em Q	ΣQ/n° de outorgas (l/s.outorga)
Natal	9	171,0	5	17	19,0
Alto do Rodrigues	3	156,7	2	16	52,2
Macaíba	31	68,9	18	7	2,2
São Gonçalo do Amarante	8	64,8	5	7	8,1
Acari	1	58,8	0,6	6	58,8
Jucurutu	3	57,4	2	6	19,1
Ceará-Mirim	4	46,5	2	5	11,6
Mossoró	10	41,0	6	4	4,1
Goianinha	2	28,2	1	3	14,1
São Bento do Norte	6	27,1	3	3	4,5
Subtotal	77	720,5	45	72	6,9

Fonte: adaptado de ANA (2017b) e Igarn (2017).

Figura 4 - Mapa de outorgas industriais por vazão e totalização por município

Fonte: ANA (2017b) e Igarn (2017). Elaboração: Fukasawa (2017). A capital, Natal, concentra 17% das vazões outorgadas no estado, seguida por Alto do Rodrigues. É notável que Alto de Rodrigues possua apenas três outorgas registradas e vazão total de 156,7 l/s, o que resulta em alta vazão média por outorga (52,2 l/s.outorga). O município de Acari também se destaca nesse quesito, dado que possui apenas uma outorga vigente e vazão total de 58,8 l/s.

Relativamente ao tipo de manancial, predomina no estado a utilização de águas subterrâneas para abastecimento industrial. Ao total, 87% do volume outorgado é referente a águas subterrâneas; no entanto, a média de vazão por outorga é superior para mananciais superficiais.

Tabela 12 - Distribuição das outorgas por fonte

Concedente	N° de outorgas	ΣQ (I/s)	% em n° de outorgas	% em Q	Q/n° de outorgas (I/s.outorga)
Superficial	22	270,0	10	13	12,3
Subterrânea	150	724,3	90	87	4,8
Total	172	994	100	100	5,8

Fonte: adaptado de ANA (2017b) e Igarn (2017).

Uma vez que o Igarn e a ANA disponibilizam os nomes e CNPJ de todos os requerentes de outorgas, foi possível a identificação dos principais segmentos industriais e suas respectivas vazões demandadas, a qual foi realizada individualmente para cada empresa por meio de consulta a registros disponíveis na internet e à Cnae 2.0. O fato de haver frequente ocorrência de grafias distintas para identificação da mesma empresa requereu análise detalhada caso a caso.

Em razão do grande número de outorgas (172), determinou-se, para fins de otimização do tempo na elaboração do estudo, que:

- Fossem buscadas as informações das empresas com maiores vazões outorgadas que, somadas, representam 98,0% das vazões outorgadas.
- Fosse utilizada a classificação "outros" para as empresas constantes nos 2,0% ignorados e para aquelas em que não foi possível obter a divisão de acordo com a Cnae 2.0.

A busca pela atividade da empresa nem sempre teve resultado positivo, o que levou à participação superior a 2,0% de atividades classificadas como "outros".

Disso, obteve-se:

Tabela 13 - Outorgas industriais por divisão da Cnae 2.0

	Divisão Cnae 2.0	N° de outorgas	Q (I/s)	% em n°	% em Q
19	Fabricação de coque, de produtos derivados do petróleo e de biocombustíveis	25	337,1	15	34
13	Fabricação de produtos têxteis	11	214,6	6	22
7	Extração de minerais metálicos	2	114,4	1	12
-	Outros	69	93,0	40	9
10	Fabricação de produtos alimentícios	10	48,2	6	5
11	Fabricação de bebidas	24	47,4	14	5
14	Confecção de artigos do vestuário e acessórios	1	45,9	1	5
35	Eletricidade, gás e outras utilidades	2	39,6	1	4
42	Obras de infraestrutura	3	9,6	2	1
43	Serviços especializados para construção	1	9,0	1	1
41	Construção de edifícios	5	6,6	3	1
28	Fabricação de máquinas e equipamentos	3	6,1	2	1
8	Extração de minerais não metálicos	2	5,2	1	1
3	Pesca e aquicultura	4	5,1	2	1
17	Fabricação de celulose, papel e produtos de papel	1	2,1	1	0,2
36	Água, esgoto, atividades de gestão de resíduos e descontaminação	2	2,1	1	0,2
23	Fabricação de produtos de minerais não metálicos	2	2,0	1	0,2

	Divisão Cnae 2.0	N° de outorgas	Q (I/s)	% em n°	% em Q
32	Fabricação de produtos diversos	1	2,0	1	0,2
22	Fabricação de produtos de borracha e de material plástico	2	1,8	1	0,2
77	Aluguéis não imobiliários e gestão de ativos intangíveis não financeiros	1	1,7	1	0,2
20	Fabricação de produtos químicos	1	0,9	1	0,1
	Total geral	172	994,3	100	100

Fonte: adaptado de ANA (2017b) e Igarn (2017).

A prevalência das demandas por água de atividades das divisões 19, 13 e 7 é bastante evidente, representando juntas quase 70% da vazão outorgada no estado. A divisão "outros", ou seja, referente às empresas cuja classificação não foi buscada ou encontrada, soma 40% de todas as outorgas do estado, mas somente 9% das vazões; isto é, são pouco relevantes do ponto de vista de identificação de oportunidades de reúso. Destaca-se que algumas divisões detectadas (divisões 3 e 77, por exemplo) não estão dentro dos setores da Cnae 2.0 industriais, mas foram mantidos por constarem nos registros do Igarn. De qualquer modo, tanto em número de outorgas quanto em vazões, essas outorgas são irrelevantes.

2.4 Identificação das ofertas

A Caern forneceu, para o desenvolvimento do estudo, banco de dados (CAERN, 2017) somente com a identificação de cada estação e o processo de tratamento, sem indicação de vazão ou localização, impossibilitando, portanto, a utilização das informações dentro no escopo deste estudo. Foi solicitada à concessionária a complementação dos dados, a qual não foi atendida. Portanto, para o RN, foram utilizados somente os dados de ETEs fornecidos pela ANA.

Tabela 14 - Fonte de dados de tratamento de esgotos

Informação	Fonte	Ano-base	Obtido via
Dados de ETEs da Caern e dos SAEEs	ANA (2016)	2013	Diretamente pela ANA
Volumes de esgoto coletado e tratado por município	SNIS 2015 (SNSA/ MCIDADES, 2016)	2015	http://www.snis. gov.br/diagnostico- agua-e-esgotos/ diagnostico- ae-2015

Fonte: elaborado pelos autores (2018).

A Caern, principal concessionária do estado, atende a 155 dos 167 municípios do Rio Grande do Norte com serviços de água e esgoto, com 42 deles contemplados com coleta e tratamento de esgotos. Os demais são atendidos por sistemas autônomos municipais, conforme consta no SNIS 2015 (SNSA/MCIDADES, 2016).

A análise dos bancos de dados resulta nos seguintes valores, aos quais foram adicionados os dados de esgoto coletado e tratado do SNIS 2015.

Tabela 15 - ETEs e vazões de coleta e tratamento de esgotos

Fonte	Vazão de esgoto coletado (l/s)	N° de ETEs	Vazão de projeto (l/s)	Vazão de esgoto tratado/ afluente (I/s)
Caern	_	64	_	_
ANA	_	41	879	656
SNIS	1.015	-	-	827

Fonte: adaptado de ANA (2016) e Caern (2017).

Uma vez que não houve cessão de dados suficientes por parte da Caern, o levantamento das vazões e a caracterização da infraestrutura de tratamento de esgotos do RN foram realizados com base somente nos dados da ANA. Utilizando-se o conceito de vazão de referência (Q_r – vide item 2.3.2), chega-se ao valor de **1.194 l/s** para o estado do Rio Grande do Norte.

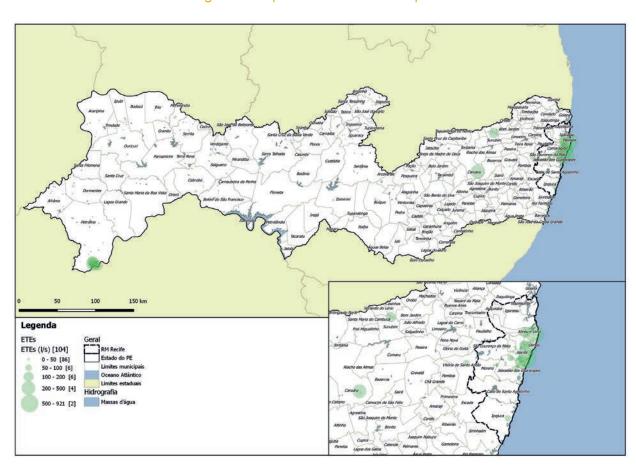
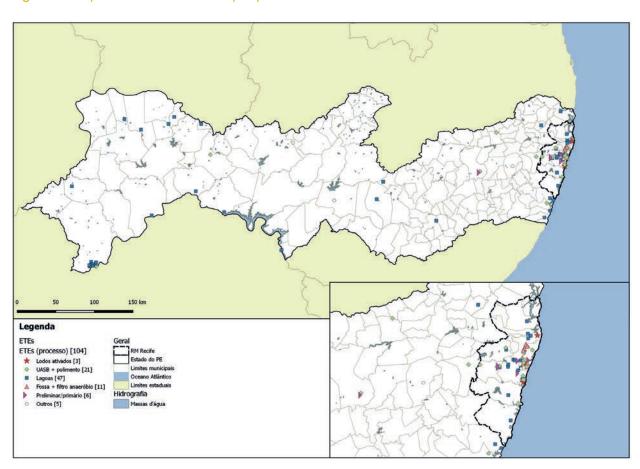


Figura 5 - Mapa das ETEs existentes por vazão

Fonte: ANA (2016).

Elaboração: Fukasawa (2017).

Em termos de processos de tratamento, o estado apresenta o seguinte panorama.


Tabela 16 - ETEs por tipo de processo

Município	N° de ETEs	Q _r (I/s)	% em n°	% em Q _r
Lagoas	37	728,5	90,2	61,0
Lodos ativados	2	457,6	4,9	38,3
Fossa + filtro anaeróbio	1	6,5	2,4	0,5
UASB	1	1,0	2,4	0,1
Total Geral	41	1.194	100	100

Fonte: adaptado de ANA (2016).

O tratamento por lagoas possui a maior representatividade tanto em número de ETEs quanto em vazão. O processo de lodos ativados aparece em segundo lugar essencialmente por conta da ETE do Baldo em Recife, cuja configuração é de UASB seguido de lodos ativados e a vazão de referência de 450 l/s.

Figura 6 - Mapa das ETEs existentes por processo

Fonte: ANA (2016).

Elaboração: Fukasawa (2017).

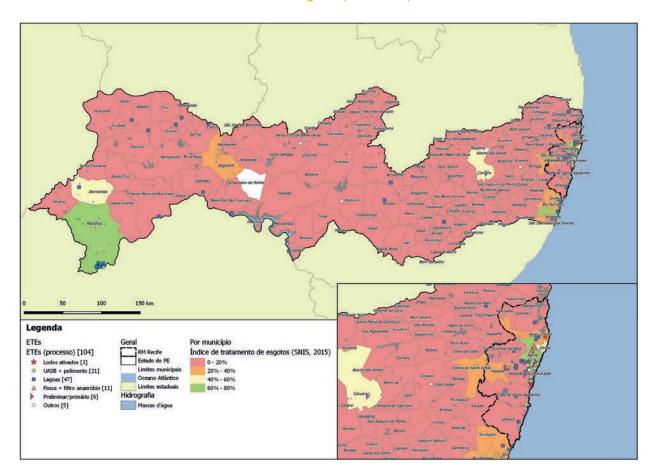


Figura 7 - Mapa das ETEs existentes por processo e atendimento de tratamento de esgotos por município

Fonte: ANA (2016) e SNSA/MCidades (2016).

Elaboração: Fukasawa (2017).

Avaliando-se a distribuição das capacidades de tratamento por município, expressas em Q_r (vazão de referência), tem-se:

Tabela 17 - Dez principais municípios em termos de vazão de tratamento de esgoto

Município	N° de ETEs	Q _r (I/s)	% em n°	% em Q _r
Natal	7	714,1	17,1	59,8
Mossoró	5	142,9	12,2	12,0
Nova Cruz	1	49,2	2,4	4,1
Santa Cruz	1	42,6	2,4	3,6
Macau	1	37,5	2,4	3,1
Currais Novos	1	32,0	2,4	2,7

Município	N° de ETEs	Q _r (I/s)	% em n°	% em Q _r
São Gonçalo do Amarante	4	28,6	9,8	2,4
Pendências	1	27,1	2,4	2,3
Florânia	1	18,2	2,4	1,5
Ceará-Mirim	1	15,2	2,4	1,3
Subtotal	23	1.107	56	93

Fonte: adaptado de ANA (2016).

A capital, Natal, concentra 60% da vazão de tratamento de esgotos do estado, ainda que represente 25% da população do Rio Grande do Norte (IBGE, 2017). Dos 714 l/s de capacidade de tratamento da capital, 540 l/s são referentes somente à ETE do Baldo, conforme já abordado. O município de Mossoró, segundo maior em população, também apresenta importante representatividade de capacidade de tratamento, concentrando 12% de toda a vazão do estado.

Ao estudar mais a fundo os processos de tratamento para os dez principais municípios em termos de capacidade, tem-se:

Tabela 18 - Dez principais municípios em termos de vazão de tratamento de esgoto por processo

	Q _r por processo (l/s)								
Município	Fossa + filtro anaeróbio	Lagoas	Lodos ativados	UASB	Total Geral				
Natal	-	263,1	450,0	1,0	714,1				
Mossoró	6,5	136,4	_	-	142,9				
Nova Cruz	-	49,2	_	-	49,2				
Santa Cruz	-	42,6	_	-	42,6				
Macau	-	37,5	_	-	37,5				
Currais Novos	-	32,0	_	-	32,0				
São Gonçalo do Amarante	-	28,6	-	-	28,6				

	Q _r por processo (I/s)							
Município	Fossa + filtro anaeróbio	Lagoas	Lodos ativados	UASB	Total Geral			
Pendências	-	27,1	-	-	27,1			
Florânia	-	18,2	_	-	18,2			
Ceará- Mirim	-	15,2	-	-	15,2			
Subtotal	6,5	650	450	1,0	1.107			

Fonte: adaptado de ANA (2016).

É notável que prevaleça o processo de lagoas para todos os municípios acima, havendo pontualmente utilização de fossa + filtro anaeróbio, UASB e lodos ativados (ETE do Baldo).

As dez principais ETEs do Rio Grande do Norte concentram 79% da vazão de todo estado e possuem tratamento exclusivamente lodos ativados (ETE do Baldo) e lagoas, conforme se verifica a seguir.

Tabela 19 - Dez principais ETEs do estado por município, vazão e processo

ETE	Q _r (I/s)	Q _r em%	Processo
ETE do Baldo – Natal	450,0	38	Lodos ativados
ETE Ponta Negra – Natal	95,0	8	Lagoas
ETE Cajazeiras – Mossoró	83,3	7	Lagoas
ETE Lagoa Aerada – Natal	72,0	6	Lagoas
ETE Quintas II – Natal	54,9	5	Lagoas
ETE Nova Cruz – Nova Cruz	49,2	4	Lagoas
ETE Santa Cruz – Santa Cruz	42,6	4	Lagoas
ETE Macau – Macau	37,5	3	Lagoas
ETE Currais Novos – Currais Novos	32,0	3	Lagoas
ETE Quintas I – Natal	27,5	2	Lagoas
Subtotal	944	79	-

Fonte: adaptado de ANA (2016).

2.5 Perfil da indústria

O PIB industrial do Rio Grande do Norte em 2014 foi da ordem de R\$ 11 bilhões, representando 20% do PIB total estadual (R\$ 54 bilhões) (IBGE, 2017b). Ao analisar os municípios com maior PIB industrial, Natal e Mossoró concentram, juntos, mais de 40% de todo o estado. Em termos de variação do PIB industrial na série de 2002 a 2014, o município de Cruzeta se destaca, com crescimento superior a 14.000% em 12 anos.

A seguir seguem os dez municípios com maior PIB industrial do estado e a variação ao longo da série histórica de 2002 a 2014.

Tabela 20 - PIB industrial e variação (2002-2014) por município

Município	PIB industrial 2014 (R\$ 1.000)	% do estado	Var. % (2002- 2014)	Var. líquida (2002-2014) (R\$ 1.000)
Natal	2.924.956	26,5	323	2.020.125
Mossoró	1.735.528	15,7	300	1.156.699
Parnamirim	670.412	6,1	297	444.706
São Gonçalo do Amarante	511.000	4,6	209	266.197
Macau	488.332	4,4	302	326.706
Areia Branca	422.089	3,8	152	143.742
Macaíba	414.377	3,8	407	312.582
Alto do Rodrigues	317.832	2,9	276	202.700
Cruzeta	307.693	2,8	14.821	305.617
Açu	259.018	2,3	323	178.724

Fonte: IBGE (2017b).

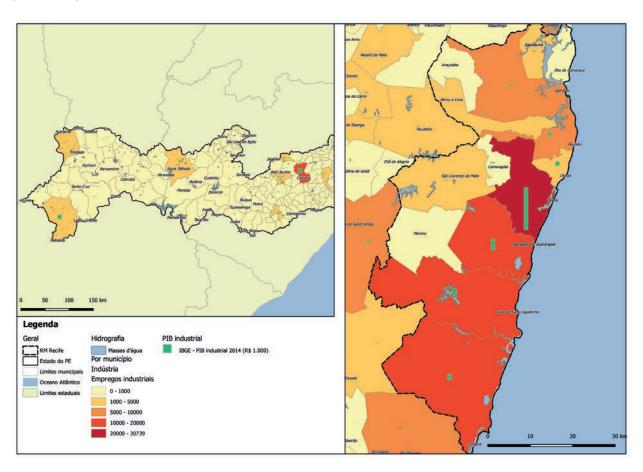
Em termos de número de empregos, o estado possuía, em 2015, 79.613 trabalhadores para os setores Cnae 2.0 pertinentes (vide item 2.4), sendo a maioria deles nos segmentos de artigos de vestuário e acessórios, fabricação de produtos alimentícios e extração e fabricação de produtos não metálicos. Em geral, os mesmos municípios que concentram a maior parte do PIB industrial também possuem o maior número de empregos.

51

Tabela 21 - Número de empregos industriais por município

Município	Número de empregos	% do estado
Natal	26.019	33
Mossoró	9.973	13
Parnamirim	6.765	8
Macaíba	5.101	6
São Gonçalo do Amarante	3.478	4
Baía Formosa	2.315	3
Caicó	1.921	2
Arês	1.712	2
Parelhas	1.533	2
Areia Branca	1.404	2

Fonte: MTE (2017a).


Tabela 22 - Principais divisões da Cnae 2.0 em números de empregos

Divisão Cnae 2.0	Denominação	Número de empregos	% do estado
14	Confecção de artigos do vestuário e acessórios	17.418	22
10	Fabricação de produtos alimentícios	13.806	17
23	Fabricação de produtos de minerais não metálicos	6.543	8
8	Extração de minerais não metálicos	6.464	8
9	Atividades de apoio à extração de minerais	5.949	7
13	Fabricação de produtos têxteis	5.209	7
6	Extração de petróleo e gás natural	4.248	5
19	Fabricação de coque, de produtos derivados do petróleo e de biocombustíveis	3.260	4
38	Coleta, tratamento e disposição de resíduos; recuperação de materiais	2.915	4

Fonte: MTE (2017a).

As figuras a seguir ilustram a distribuição de empregos industriais no estado, o PIB industrial e a participação das principais divisões da Cnae 2.0 por município.

Figura 8 - Mapa do número de empregos industriais e PIB industrial por município

Fonte: MTE (2017a) e IBGE (2017b). Elaboração: Fukasawa (2017).

Legenda
Coral
Solution municipio
Interes minicipis
Uninte municipis
Uninteres municipis
Uninter

Figura 9 - Mapa do número de empregos industriais e participação das cinco principais divisões da Cnae 2.0 no estado

Fonte: MTE (2017a).

Elaboração: Fukasawa (2017).

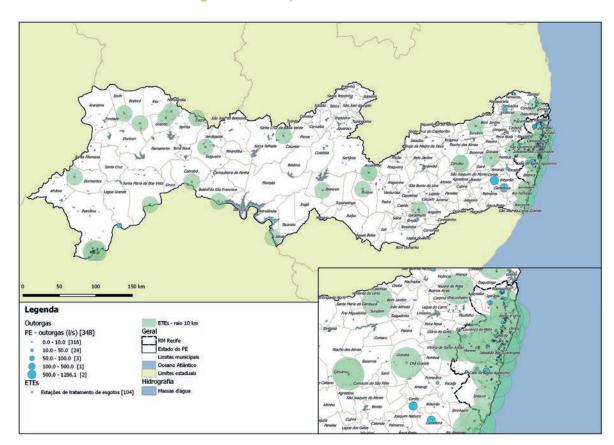
A Tabela 23 apresenta a distribuição dos empregos, por divisão Cnae 2.0, para dez municípios com maior PIB industrial do estado.

Tabela 23 - Distribuição de empregos por divisão Cnae 2.0 e município

1 1 1 1 1 1 1 1 1 1	·/b/2-	=										
The color of the	ACA ODE MANERO DE	Gera	019	973	765	01	178	315	321	712	533	104
The color of the	SOS, PECUPENTO E DIENERO E	Total	26.	9.6	9	51	3.4	2.3	1.5	1.	1.5	1.4
The color of the	Nu. Jun		1.962	134	410	15	116					
The color of the	SO PAGO 3 3 TO	35	903	8		20	1					19
	DE JEW JEW ODU TOOUT OUT OF WELLOS	33	481	441	107	19	20		12	56		4
	200 100 F3 40 100 M	32	_	_	909		20		43	_	3	Н
			H	_	ì	12			_			3
	30. 20.	⊢	.5	0	2	_			.0	Н	2	
Company Comp	PAPA SOUNAS AND SOUNAS AND SELLEN	⊢	Н	_	_	_	4			Н		96
The content of the	MATERIALS ELEMANS ELESDE	_	_	7.	_	14	_				1	16
The content of the	A TAMPAND SE SOURS METAL STAND SE SOURS METAL STAND SE SOURS METAL AND SE SOURS METAL	_	32		17		8					
The column The	ABP AND MARKET	26	97	11								
The content of the	FABRICA EXAMINERALE	52	260	317	157	38	20		6		11	19
The control of the	METALUE COS PRODUTO CORPACHA	24	46	2		45	11				5	3
The control of the	RABAICACACACACACTON TOOL TOOL TOOL TOOL TOOL TOOL TOOL T	23	433	764	285	278	401		232		575	
The content of the	FABRICAS E FABRICOS	22	9/	148	2 26	303	25		118		4	
1 1 1 1 1 1 1 1 1 1	SO, 30 JOO SONOT	21	2									
1	2021 00 20 00 00 00 00 00 00 00 00 00 00 00	20	54	331	46	183			-		2	
Comparison of the property o	ABA CACACACACACACACACACACACACACACACACACA	H	-	<u>``</u>	_	Ė		302				
1	AM 420 Wadra 12831	⊢	10	53	32	4	4	2.	15		13	
1	LO PAPA 200 20TUDU PAPA PAPA 20TUDO PA	H	_	_	_		4		_		_	
1 1 1 1 1 1 1 1 1 1	30/97 0000 5 0000 5 000	H	3	_	_	9		\vdash	4	Н	1	L
1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	H	_	-	-	4			-	Н	1	
1 1 1 1 1 1 1 1 1 1	ACESSONOS ARTES	H		Ш		0	1				ω.	
1 1 1 1 1 1 1 1 1 1	OMUA OU SOL	14	6	2	7	_	``		2		376	
1 1 1 1 1 1 1 1 1 1	FABRICA DE PRODU	13	163	30	351	1.15	2.41		193			
1 1 1 1 1 1 1 1 1 1	FABRICAS SALMENTICIOS	12	20			66						
	30 OPT ODOPY ODOPY	11					15		18			
1 1 1 1 2 3 4 1 1 1 2 3 4 4 4 4 4 4 4 4 4	FABRICA EADOLO A EX	10	3.072	2.316	1.34	1.894	158	12	398	1.686	105	329
28 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	SOJ NAJAMIN OFOINIA	6	2,675	1.768	391	228	15	1	87		36	21
28 20 29 55 7 4 CYTNACKOOK PRETTAGLED 28 22 23 23 24 24 25 25 25 25 25 25 25 25 25 25 25 25 25	EXTRACTO OD ON THERE	8	1.035	1.554	45	258	81		108		374	782
20 20 20 20 20 20 20 20 20 20 20 20 20 2	EXTRAÇÃO DE COLEO E COL	7	62		7	2	_				2	
	300 P3PA(142	9		911	23	25	59		20			28
Município Natal Nossoró Parnamirm Macaiba Gonçalo do Amaran Baia Formosa Caicó Arês Parelhas		7			H			H	H	H	\vdash	_
Municip Natal Natal Mosso Pamami Macabi Gonçalo do Baia Forr Caicó Caicó		io		Ç.	rim	ā	Amaran	osa			1S	nca
		unicíp	Natal	lossor	rnamir	1acaíb	alo do	Form.	Caicó	Arês	arelha	ia Bra
		Ä		Ň	Pa	2	o Gonça	Baía			Б	Are

Fonte: adaptado de MTE (2017a).

2.6 Oportunidades de reúso


A partir da exportação das informações do Sistema de Informações Geográficas (SIG), detectaram-se as potencialidades de reúso para cada uma das ETEs existentes do estado. A análise foi realizada com o objetivo de detectar as correlações entre as vazões das estações e as outorgas industriais dentro da área delimitada por um raio de 10 km em torno de cada planta. Foram analisadas todas as ETEs do estado. Buscando destacar os casos mais relevantes, a análise foi realizada de acordo com o seguinte critério:

- Vazões outorgadas no entorno das 20 maiores ETEs do estado.
- 20 maiores vazões outorgadas no entorno de ETEs.

Os resultados para todas as ETEs do estado, contemplando, inclusive, dados de coordenadas geográficas, constam do **Anexo 1 – Resultados por ETE**.

A figura a seguir ilustra a interação entre as outorgas, classificadas de acordo com a vazão, e as ETEs e as áreas encerradas dentro do raio de 10 km determinado.

Figura 10 - Mapa com raio de 10 km em torno das ETEs existentes e outorgas industriais por vazão

Fonte: ANA (2016; 2017b) e Igarn (2017).

Elaboração: Fukasawa (2017).

Para o estado do Rio Grande do Norte, das 41 ETEs analisadas, 28 apresentam, ao menos, 1 registro de outorga industrial dentro do raio de 10,0 km determinado, das quais:

Tabela 24 - Número de ETEs por faixa de vazão industrial outorgada nas proximidades

Faixa de vazão outorgada (I/s)	N° de ETEs
0	13
0 - 10	11
10 - 100	3
50 - 100	1
100 - 200	3
200 - 500	10

Fonte: adaptado de ANA (2016, 2017b) e Igarn (2017).

Apesar de o número de ETEs ser relativamente baixo, verifica-se que importante parcela delas possui vazões altas (entre 200 e 500 l/s) em suas proximidades. Vale frisar que a Caern forneceu alguns dados sobre suas ETEs, os quais, no entanto, foram insuficientes para a elaboração deste estudo (vide item 3.4). Verificou-se que o número de ETEs constantes nos registros da concessionária (64) é superior ao apresentado pela ANA (41), e, caso futuramente sejam disponibilizados dados mais completos sobre as estações, a análise para o estado poderá ser complementada, uma vez que todas as ETEs estudadas foram obtidas exclusivamente a partir de registros da ANA

Foram analisadas, primeiramente, as 20 maiores ETEs do estado e as respectivas vazões outorgadas localizadas no raio de 10 km. Em seguida, avaliaram-se as 20 estações que possuem as maiores vazões outorgadas no mesmo raio.

Para as 20 maiores ETEs do estado, foram destacadas aquelas que possuem vazões industriais outorgadas relevantes em seu entorno, expressas pela relação Q_{out}/Q_{r} . Ressaltaram-se aquelas com $Q_{out}/Q_{r} \ge 0,5$, ou seja, aquelas para as quais a soma das outorgas dentro do raio de 10 km equivale a, ao menos, 50% da vazão de referência da planta.

Tabela 25 - 20 maiores ETEs e vazões outorgadas

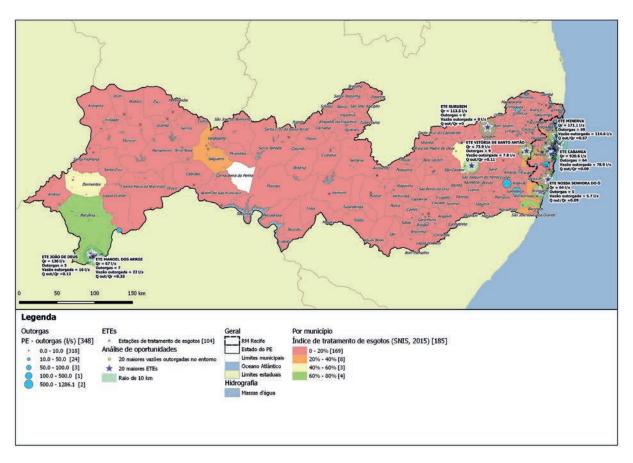
N°	Município	ETE	Q _r (I/s)	Processo	Q _{out} (I/s)	N° de outorgas	Q _{out} /Q _r
1	Natal	ETE do Baldo	450,0	Lodos ativados	215,1	9	0,5
2	Natal	ETE Ponta Negra	95,0	Lagoas	17,0	13	0,2
3	Mossoró	ETE Cajazeiras	83,3	Lagoas	9,4	6	0,1
4	Natal	ETE Lagoa Aerada	72,0	Lagoas	293,4	39	4,1
5	Natal	ETE Quintas II	54,9	Lagoas	239,3	16	4,4
6	Nova Cruz	ETE Nova Cruz	49,2	Lagoas	0	0	0,0
7	Santa Cruz	ETE Santa Cruz	42,6	Lagoas	0	0	0,0
8	Macau	ETE Macau	37,5	Lagoas	4,7	1	0,1
9	Currais Novos	ETE Currais Novos	32,0	Lagoas	4,6	3	0,1
10	Natal	ETE Quintas I	27,5	Lagoas	236,6	13	8,6
11	Pendências	ETE Pendências	27,1	Lagoas	119,5	4	4,4
12	Mossoró	ETE Rincão	25,3	Lagoas	9,4	6	0,4
13	Mossoró	ETE Vingt-Rosado	19,4	Lagoas	10,3	7	0,5
14	Florânia	ETE Florânia	18,2	Lagoas	0	0	0,0
15	Ceará- Mirim	ETE Ceará-mirim	15,2	Lagoas	43,5	3	2,9
16	Natal	ETE Nordeste	13,7	Lagoas	276,1	32	20,1
17	São Rafael	ETE São Rafael	13,6	Lagoas	0,1	1	0,0
18	São Gonçalo do Amarante	ETE Rego Molero III	12,3	Lagoas	256,9	29	21,0
19	Pau dos Ferros	ETE Pau Dos Ferros	12,2	Lagoas	0	0	0,0
20	Parelhas	ETE Parelhas	11,6	Lagoas	0,7	2	0,1

Fonte: adaptado de ANA (2016, 2017b) e Igarn (2017).

Em geral, importante parcela das ETEs do estado apresenta demandas industriais relevantes em suas proximidades. Entre as dez maiores, destacam-se quatro ETEs localizadas na capital: ETEs do Baldo, Lagoa Aerada, Quintas II e Quintas I. São relevantes também: ETEs Pendências (Pendências), Vingt-Rosado (Mossoró), Ceará-Mirim (Ceará-Mirim) e Nordeste (Natal).

Do ponto de vista das 20 ETEs que possuem as maiores vazões industriais outorgadas nas proximidades, foram destacadas aquelas que possuem $Q_r \ge 10 \text{ l/s}$, dado que há diversas estações de capacidades muito reduzidas.

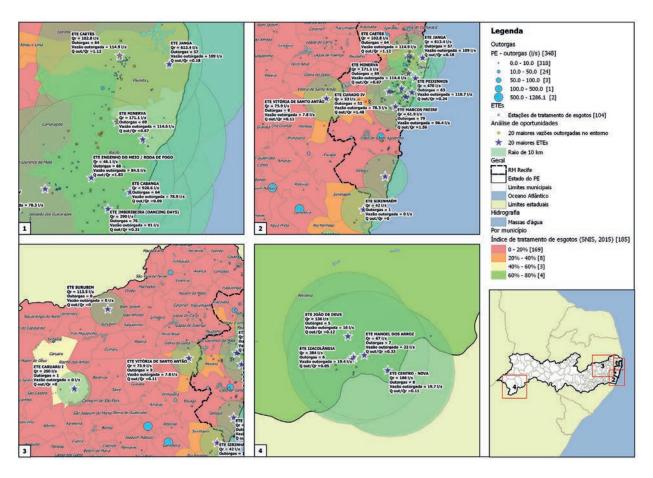
Tabela 26 - ETEs com as 20 maiores vazões outorgadas no entorno


N°	Município	ETE	Q _r (I/s)	Processo	Q _{out} (I/s)	N° de outorgas	Q _{out} /Q _r
1	São Gonçalo do Amarante	ETE Santo Antônio	5,4	Lagoas	303,3	44	55,7
2	Natal	ETE Lagoa Aerada	72,0	Lagoas	293,4	39	4,1
3	Natal	ETE Nordeste	13,7	Lagoas	276,1	32	20,1
4	São Gonçalo do Amarante	ETE Centro	1,4	Lagoas	273,4	36	200,8
5	São Gonçalo do Amarante	ETE Rego Molero III	12,3	Lagoas	256,9	29	21,0
6	Natal	ETE Quintas II	54,9	Lagoas	239,3	16	4,4
7	Natal	ETE Quintas I	27,5	Lagoas	236,6	13	8,6
8	São Gonçalo do Amarante	ETE Amarante	9,5	Lagoas	236,3	18	24,8
9	Natal	ETE Tanque Imhoff	1,0	UASB	229,4	11	229,4
10	Natal	ETE do Baldo	450,0	Lodos ativados	215,1	9	0,5
11	Carnaubais	ETE Carnaubais	5,5	Lagoas	157,1	4	28,8
12	Pendências	ETE Pendências	27,1	Lagoas	119,5	4	4,4
13	Alto do Rodrigues	ETE Alto do Rodrigues	0,6	Lagoas	119,5	4	189,6
14	Acari	ETE Acari	6,3	Lagoas	58,8	1	9,3
15	Ceará- Mirim	ETE Ceará-mirim	15,2	Lagoas	43,5	3	2,9
16	Natal	ETE Ponta Negra	95,0	Lagoas	17,0	13	0,2
17	Mossoró	ETE Vingt-Rosado	19,4	Lagoas	10,3	7	0,5
18	Mossoró	ETE Cajazeiras	83,3	Lagoas	9,4	6	0,1
19	Mossoró	ETE Rincão	25,3	Lagoas	9,4	6	0,4
20	Mossoró	ETE Marechal Dutra	6,5	Fossa + filtro anaeróbio	7,1	5	1,1

Fonte: adaptado de ANA (2016, 2017b) e Igarn (2017).

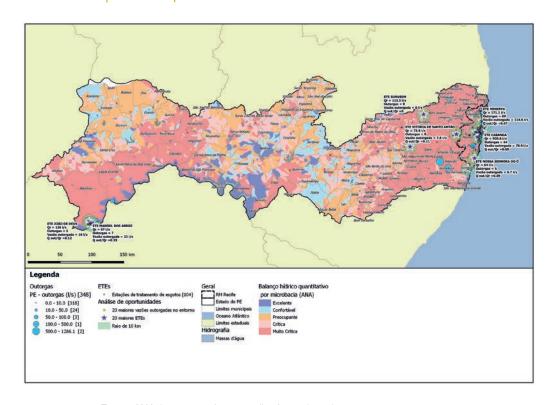
Entre as ETEs com as maiores vazões industriais outorgadas em seu entorno, nota-se a prevalência de plantas nos municípios de São Gonçalo do Amarante e Natal. Ao selecionar as ETEs que possuem vazão de referência superior a 10 l/s, ressaltam-se as ETEs Lagoa Aerada (Natal), Nordeste (Natal), Rego Molero III (São Gonçalo do Amarante), Quintas II (Natal), Quintas I (Natal), Baldo (Natal), Pendências (Pendências), Ceará-Mirim (Ceará-Mirim), Ponta Negra (Natal), Vingt-Rosado (Mossoró), Cajazeira (Mossoró) e Rincão (Mossoró).

As figuras a seguir apresentam as 20 maiores ETEs do estado, as 20 ETEs que possuem as maiores vazões outorgadas em suas proximidades, as outorgas industriais (classificadas por vazão) e o índice de tratamento de esgotos, obtido pela razão entre os volumes anuais tratado e consumido de acordo com o SNIS 2015. Foram realizadas aproximações para as seguintes regiões: Região Metropolitana de Natal (1); região do município de Currais Novos (2); Mossoró (3) e região do município de Pendências (4).


Figura 11 - Mapa de identificação de oportunidades e atendimento de tratamento de esgotos por município

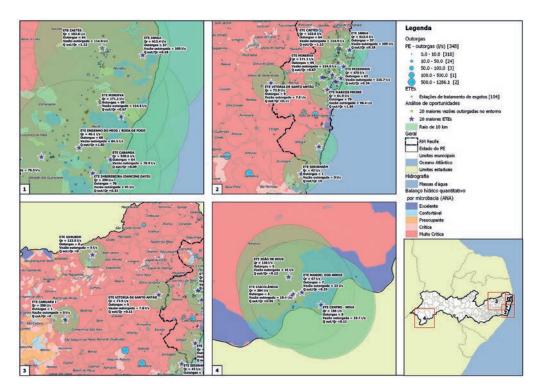
Fonte: ANA (2016, 2017b), Igarn (2017) e SNSA/MCidades (2016). Elaboração: Fukasawa (2017).

60


Figura 12 - Mapa de identificação de oportunidades e atendimento de tratamento de esgotos por município – principais regiões

Fonte: ANA (2016, 2017b), Igarn (2017) e SNSA/MCidades (2016). Elaboração: Fukasawa (2017).

A mesma análise segue para as figuras a seguir, considerando-se a classificação, de acordo com a ANA, de balanço qualitativo por microbacia hidrográfica, o qual varia de "muito crítico" a "excelente".


Figura 13 - Mapa de identificação de oportunidades e balanço hídrico quantitativo por microbacia

Fonte: ANA (2016, 2017b e 2017d) e Igarn (2017).

Elaboração: Fukasawa (2017).

Figura 14 - Mapa de identificação de oportunidades e balanço hídrico quantitativo por microbacia - principais regiões

Fonte: ANA (2016, 2017b, 2017d) e Igarn (2017). Elaboração: Fukasawa (2017).

2.7 Análise e comentários

A partir dos tópicos anteriores desenvolvidos, apontam-se as principais análises sobre o estado do Rio Grande do Norte:

- Disponibilidade hídrica: em geral, as microbacias onde se encontram as principais concentrações urbanas e industriais (Região Metropolitana de Natal e município de Mossoró) são classificadas majoritariamente como "crítica" ou "muito crítica". Entre as 20 maiores ETEs do estado, quase todas estão em áreas de escassez hídrica, ainda que algumas, como a ETE Currais Novos (Currais Novos) e Florânia (Florânia), encontrem-se em municípios com disponibilidade hídrica mais confortável. Evidencia-se, portanto, a relevância da utilização dos efluentes tratados para atendimento a demandas não potáveis e consequente redução de pressão sobre os mananciais existentes.
- Saneamento básico: a abrangência de tratamento de esgotos do estado é de cerca de apenas 22% (SNSA/MCIDADES, 2016) e sempre inferior a 40% para todos os municípios da Região Metropolitana de Natal. Mesmo com baixa abrangência de tratamento, o estado conta com importante parcela (38%) do esgoto tratado por processo de lodos ativados (essencialmente em razão da ETE do Baldo, em Natal), sendo praticamente todo o restante por lagoas. A necessidade de ampliação da capacidade de tratamento é evidente e resulta em oportunidade para o planejamento de utilização dos efluentes tratados para atendimento de demandas não potáveis em regiões onde haja escassez hídrica.
- Indústria: tanto em termos de PIB industrial anual quanto em número de empregos, destacam-se os municípios da Região Metropolitana de Natal (Natal, Macaíba e Parnamirim) e o municípios de Mossoró, com também algum destaque para Caicó e Parelhas. Os setores prevalentes, em números de empregos, são principalmente os de confecção de artigos do vestuário (divisão 14), fabricação de produtos alimentícios (divisão 10) e fabricação de metais de produtos de minerais não metálicos (divisão 23).

- Panorama geral de oportunidades de reúso industrial: em geral, o estado apresenta vazões industriais relevantes próximas às principais ETEs, com destaque à ETE do Baldo, a qual, além de ser a maior do Rio Grande do Norte e possuir processo de lodos ativados, apresenta razão Q_{out}/Q_r = 0,5, indicando potencial para reúso industrial. As oportunidades mais proeminentes estão localizadas nos municípios da Região Metropolitana de Natal (Natal, São Gonçalo do Amarante e Ceará-Mirim) e Mossoró.
- ETEs com altas vazões e altas demandas industriais no entorno: os pontos de intersecção oferta versus demanda mais relevantes localizam-se em Natal, com destaque às ETEs do Baldo, Lagoa Aerada, Quintas II e Quintas I, todas na capital. São passíveis de destaque também as ETEs Pendências (Pendências), Vingt-Rosado (Mossoró), Cará-Mirim (Ceará-Mirim), Nordeste (Natal) e Rego Molero III (São Gonçalo do Amarante),
- ETEs com altas vazões e baixas ou nenhuma demanda industrial no entorno: há ETEs com importantes vazões e sem registros relevantes de demandas industriais, informação que pode basear o desenvolvimento de polos industriais a serem abastecidos por água de reúso a partir dos efluentes tratados. Nesse quesito, destacam-se as ETEs Ponta Negra (Natal), Cajazeiras (Mossoró), Nova Cruz (Nova Cruz), Santa Cruz (Santa Cruz), Macau (Macau), Currais Novos (Currais Novos), Rincão (Mossoró), Florânia (Florânia), São Rafael (São Rafael), Pau dos Ferros (Pau dos Ferros) e Parelhas (Parelhas).
- entorno: há incidência de ETEs localizadas em áreas que concentram altas demandas industriais, mas com baixas vazões de tratamento, o que indica a possibilidade da ampliação da capacidade das plantas considerando-se possível atendimento às demandas próximas. Destacam-se nesse aspecto as ETEs Santo Antônio (São Gonçalo do Amarante), Centro (São Gonçalo do Amarante), Amarante (São Gonçalo do Amarante), Tanque Imhoff (Natal), Carnaubais (Carnaubais), Alto do Rodrigues (Alto do Rodrigues) e Acari (Acari).

2.7.1 Agrupamento por município

Ao organizar os dados de entrada e resultados do estudo por município a partir de informações de esgoto coletado e tratado (ES005 e ES006, respectivamente) do SNIS 2015 (SNSA/MCIDADES, 2016), da demanda hídrica industrial estimada pela ANA (ANA, 2017a) e das vazões de referência das ETEs (\mathbf{Q}_r) e industriais outorgadas (\mathbf{Q}_{out}) obtidas neste estudo, chega-se ao seguinte panorama. Os municípios estão organizados em ordem decrescente de vazão industrial outorgada (\mathbf{Q}_{out}).

Tabela 27 - Demanda industrial e tratamento de esgoto agregados por município

	Dema	nda industrial	Coleta e tratamento de esgotos			
Município	Qout (I/s)	Demanda industrial (I/s) (ANA, 2017a)	Qr (I/s)	Esgoto coletado (l/s) (SNIS 2015 – ES005)	Esgoto tratado (l/s) (SNIS 2015 – ES006)	
Natal	171,0	185,6	714,1	452,4	329,3	
Alto do Rodrigues	156,7	1,0	0,6	0,2	0,2	
Macaíba	68,9	64,0	0,0	1,9	1,9	
São Gonçalo do Amarante	64,8	45,0	28,6	83,1	83,1	
Acari	58,8	1,7	6,3	4,5	4,5	
Jucurutu	57,4	2,7	5,3	3,4	3,4	
Ceará-Mirim	46,5	116,3	15,2	14,7	13,3	
Mossoró	41,0	94,9	142,9	149,1	149,1	
Goianinha	28,2	0,4	0,0	3,3	3,3	
São Bento do Norte	27,1	0,0	0,0	0,0	0,0	
Areia Branca	26,9	3,9	0,0	0,0	0,0	
Macau	26,1	1,0	37,5	21,2	21,2	
Apodi	25,4	3,4	0,0	0,0	0,0	
Felipe Guerra	25,0	0,0	0,0	0,0	0,0	
Governador Dix-Sept Rosado	20,8	1,7	0,0	0,0	0,0	
Parnamirim	17,3	75,2	0,0	7,6	7,6	
Guamaré	16,2	82,3	0,0	0,0	0,0	

	Demanda industrial		Coleta e tratamento de esgotos			
Município	Qout (I/s)	Demanda industrial (I/s) (ANA, 2017a)	Qr (I/s)	Esgoto coletado (l/s) (SNIS 2015 – ES005)	Esgoto tratado (l/s) (SNIS 2015 – ES006)	
Jardim de Piranhas	15,0	4,2	0,0	6,3	0,0	
Açu	12,3	6,4	0,0	0,0	0,0	
Upanema	11,6	1,3	0,0	0,0	0,0	
Baraúna	10,0	1,9	0,0	0,0	0,0	
Serra do Mel	8,6	0,2	0,0	0,0	0,0	
Pedra Grande	7,8	0,0	0,0	0,0	0,0	
Jandaíra	7,7	0,0	0,0	0,0	0,0	
Caraúbas	6,9	0,1	0,0	0,0	0,0	
Currais Novos	4,6	4,1	32,0	21,2	21,2	
Parazinho	4,1	0,0	0,0	0,0	0,0	
Pendências	4,0	0,2	27,1	5,0	5,0	
Canguaretama	3,9	0,9	0,0	0,0	0,0	
São José de Mipibu	3,9	13,8	0,0	0,3	0,3	
Bodó	3,8	0,1	0,0	0,0	0,0	
Cruzeta	2,9	3,4	0,0	9,0	0,0	
Taipu	2,7	3,2	0,0	0,0	0,0	
Galinhos	2,3	0,0	0,0	0,0	0,0	
Extremoz	0,7	15,0	0,0	0,0	0,0	
Parelhas	0,7	4,1	11,6	16,5	16,5	
Alexandria	0,7	1,0	0,0	7,2	0,0	
Carnaubais	0,4	0,0	5,5	2,6	2,6	
Lajes	0,4	0,2	5,5	6,3	6,3	
Brejinho	0,3	1,7	0,0	0,0	0,0	
Caicó	0,3	13,3	0,0	5,4	5,4	
Rio do Fogo	0,3	0,2	0,0	0,0	0,0	
Nova Cruz	0,0	5,4	49,2	3,9	3,9	
Santa Cruz	0,0	2,7	42,6	45,5	45,5	
Florânia	0,0	0,0	18,2	5,8	5,8	
São Rafael	0,0	0,0	13,6	3,8	3,8	

	Demanda industrial		Coleta e tratamento de esgotos			
Município	Qout (I/s)	Demanda industrial (I/s) (ANA, 2017a)	Qr (l/s)	Esgoto coletado (I/s) (SNIS 2015 – ES005)	Esgoto tratado (I/s) (SNIS 2015 - ES006)	
Pau dos Ferros	0,0	1,0	12,2	3,0	3,0	
Espírito Santo	0,0	0,0	7,6	1,7	1,7	
Touros	0,0	0,5	4,4	0,0	0,0	
Pedro Velho	0,0	0,5	4,2	2,8	2,8	
Lagoa Nova	0,0	0,6	3,7	7,1	7,1	
Santo Antônio	0,0	0,2	3,5	1,9	1,9	
São Tomé	0,0	0,0	0,6	2,9	2,9	
Afonso Bezerra	0,0	0,0	0,6	4,6	4,6	
Pedro Avelino	0,0	0,2	0,5	3,3	3,3	
Caiçara do Rio do Vento	0,0	0,0	0,3	1,5	1,5	
Santana do Seridó	0,0	1,3	0,1	1,5	1,5	
Água Nova	0,0	0,0	0,0	0,0	0,0	
Almino Afonso	0,0	0,0	0,0	0,0	0,0	
Angicos	0,0	1,2	0,0	0,0	0,0	
Antônio Martins	0,0	0,0	0,0	0,0	0,0	
Arês	0,0	315,7	0,0	0,0	0,0	
Augusto Severo	0,0	0,2	0,0	0,0	0,0	
Baía Formosa	0,0	511,4	0,0	0,0	0,0	
Barcelona	0,0	0,1	0,0	0,0	0,0	
Bento Fernandes	0,0	0,0	0,0	0,0	0,0	
Bom Jesus	0,0	0,0	0,0	0,0	0,0	
Caiçara do Norte	0,0	0,0	0,0	0,0	0,0	
Campo Redondo	0,0	0,0	0,0	0,9	0,9	
Carnaúba dos Dantas	0,0	2,0	0,0	0,0	0,0	
Cerro Corá	0,0	1,7	0,0	0,0	0,0	

	Demanda industrial		Coleta e tratamento de esgotos			
Município	Qout (I/s)	Demanda industrial (I/s) (ANA, 2017a)	Qr (I/s)	Esgoto coletado (l/s) (SNIS 2015 – ES005)	Esgoto tratado (l/s) (SNIS 2015 – ES006)	
Coronel Ezequiel	0,0	0,2	0,0	0,0	0,0	
Coronel João Pessoa	0,0	0,0	0,0	0,0	0,0	
Doutor Severiano	0,0	0,0	0,0	0,8	0,8	
Encanto	0,0	0,1	0,0	31,7	0,0	
Equador	0,0	0,3	0,0	0,0	0,0	
Fernando Pedroza	0,0	0,0	0,0	0,0	0,0	
Francisco Dantas	0,0	0,0	0,0	0,0	0,0	
Frutuoso Gomes	0,0	0,2	0,0	0,0	0,0	
Grossos	0,0	0,2	0,0	0,0	0,0	
Ielmo Marinho	0,0	0,5	0,0	0,0	0,0	
Ipanguaçu	0,0	0,3	0,0	0,0	0,0	
Ipueira	0,0	0,0	0,0	0,0	0,0	
Itajá	0,0	1,5	0,0	0,0	0,0	
ltaú	0,0	0,4	0,0	0,0	0,0	
Jaçanã	0,0	0,2	0,0	0,0	0,0	
Janduís	0,0	0,1	0,0	0,0	0,0	
Januário Cicco	0,0	0,0	0,0	0,0	0,0	
Japi	0,0	0,0	0,0	0,0	0,0	
Jardim de Angicos	0,0	0,0	0,0	0,0	0,0	
Jardim do Seridó	0,0	5,1	0,0	0,0	0,0	
João Câmara	0,0	0,8	0,0	8,9	8,9	
João Dias	0,0	0,0	0,0	0,0	0,0	
José da Penha	0,0	0,0	0,0	0,4	0,4	
Jundiá	0,0	0,0	0,0	0,0	0,0	
Lagoa de Pedras	0,0	0,0	0,0	0,0	0,0	

	Demanda industrial		Coleta e tratamento de esgotos		
Município	Qout (I/s)	Demanda industrial (I/s) (ANA, 2017a)	Qr (I/s)	Esgoto coletado (l/s) (SNIS 2015 – ES005)	Esgoto tratado (l/s) (SNIS 2015 – ES006)
Lagoa de Velhos	0,0	0,0	0,0	0,0	0,0
Lagoa d`Anta	0,0	0,0	0,0	0,0	0,0
Lagoa Salgada	0,0	0,1	0,0	0,0	0,0
Lajes Pintadas	0,0	0,4	0,0	1,4	1,4
Lucrécia	0,0	0,0	0,0	2,4	2,4
Luís Gomes	0,0	0,0	0,0	0,0	0,0
Major Sales	0,0	0,0	0,0	0,0	0,0
Marcelino Vieira	0,0	0,0	0,0	0,0	0,0
Martins	0,0	0,1	0,0	0,0	0,0
Maxaranguape	0,0	0,0	0,0	0,0	0,0
Messias Targino	0,0	0,4	0,0	0,0	0,0
Montanhas	0,0	0,1	0,0	0,0	0,0
Monte Alegre	0,0	5,6	0,0	1,3	1,3
Monte das Gameleiras	0,0	0,0	0,0	0,0	0,0
Nísia Floresta	0,0	0,3	0,0	0,0	0,0
Olho-d'Água do Borges	0,0	0,0	0,0	0,0	0,0
Ouro Branco	0,0	0,6	0,0	5,8	0,0
Paraná	0,0	0,0	0,0	0,0	0,0
Paraú	0,0	0,0	0,0	0,0	0,0
Passa e Fica	0,0	0,3	0,0	24,1	20,6
Passagem	0,0	0,0	0,0	0,0	0,0
Patu	0,0	0,0	0,0	0,0	0,0
Pedra Preta	0,0	0,0	0,0	0,0	0,0
Pilões	0,0	0,0	0,0	0,0	0,0
Poço Branco	0,0	0,4	0,0	0,0	0,0
Portalegre	0,0	0,0	0,0	0,0	0,0
Porto do Mangue	0,0	0,0	0,0	0,0	0,0

\sim	\sim
h	u
()	.71
_	_

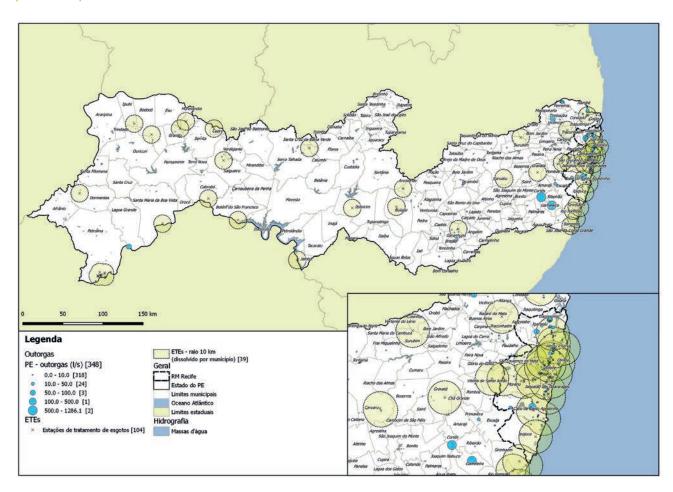
	Demanda industrial		Coleta e tratamento de esgotos			
Município	Qout (I/s)	Demanda industrial (I/s) (ANA, 2017a)	Qr (I/s)	Esgoto coletado (l/s) (SNIS 2015 – ES005)	Esgoto tratado (l/s) (SNIS 2015 – ES006)	
Pureza	0,0	0,0	0,0	0,0	0,0	
Rafael Fernandes	0,0	0,0	0,0	0,0	0,0	
Rafael Godeiro	0,0	0,0	0,0	0,0	0,0	
Riacho da Cruz	0,0	0,0	0,0	0,0	0,0	
Riacho de Santana	0,0	0,0	0,0	0,0	0,0	
Riachuelo	0,0	0,2	0,0	4,7	4,7	
Rodolfo Fernandes	0,0	0,1	0,0	0,0	0,0	
Ruy Barbosa	0,0	0,0	0,0	0,0	0,0	
Santa Maria	0,0	0,0	0,0	0,0	0,0	
Santana do Matos	0,0	0,2	0,0	0,0	0,0	
São Bento do Trairí	0,0	0,1	0,0	1,7	1,7	
São Fernando	0,0	0,5	0,0	2,9	2,9	
São Francisco do Oeste	0,0	1,4	0,0	0,0	0,0	
São João do Sabugi	0,0	0,1	0,0	0,0	0,0	
São José do Campestre	0,0	0,2	0,0	0,0	0,0	
São José do Seridó	0,0	3,7	0,0	2,2	2,2	
São Miguel	0,0	0,0	0,0	0,0	0,0	
São Miguel do Gostoso	0,0	0,0	0,0	0,0	0,0	
São Paulo do Potengi	0,0	0,5	0,0	2,5	2,5	
São Pedro	0,0	0,0	0,0	0,0	0,0	
São Vicente	0,0	1,0	0,0	0,0	0,0	
Senador Elói de Souza	0,0	0,0	0,0	0,0	0,0	
Senador Georgino Avelino	0,0	0,0	0,0	0,0	0,0	

	Demanda industrial		Coleta e tratamento de esgotos		
Município	Qout (I/s)	Demanda industrial (I/s) (ANA, 2017a)	Qr (l/s)	Esgoto coletado (I/s) (SNIS 2015 – ES005)	Esgoto tratado (I/s) (SNIS 2015 - ES006)
Serra Caiada	0,0	0,0	0,0	0,0	0,0
Serra de São Bento	0,0	0,3	0,0	0,0	0,0
Serra Negra do Norte	0,0	2,4	0,0	7,6	7,6
Serrinha	0,0	0,0	0,0	0,0	0,0
Serrinha dos Pintos	0,0	0,0	0,0	0,0	0,0
Severiano Melo	0,0	0,2	0,0	0,0	0,0
Sítio Novo	0,0	0,0	0,0	0,0	0,0
Taboleiro Grande	0,0	0,3	0,0	0,0	0,0
Tangará	0,0	1,3	0,0	0,0	0,0
Tenente Ananias	0,0	0,6	0,0	0,0	0,0
Tenente Laurentino Cruz	0,0	0,1	0,0	0,0	0,0
Tibau	0,0	0,0	0,0	0,0	0,0
Tibau do Sul	0,0	0,8	0,0	4,7	4,7
Timbaúba dos Batistas	0,0	0,0	0,0	0,0	0,0
Triunfo Potiguar	0,0	0,0	0,0	0,0	0,0
Umarizal	0,0	0,0	0,0	0,0	0,0
Várzea	0,0	0,0	0,0	0,0	0,0
Venha-Ver	0,0	0,0	0,0	0,0	0,0
Vera Cruz	0,0	1,0	0,0	0,0	0,0
Viçosa	0,0	0,0	0,0	0,0	0,0
Vila Flor	0,0	0,0	0,0	0,0	0,0
Total	994,3	1.632,4	1.193,6	1.014,5	826,5

Fonte: adaptado de ANA (2016; 2017a; 2017b), Igarn (2017) e SNSA/MCidades (2016).

É possível verificar que, no tocante às demandas industriais, há significativa diferença entre os valores obtidos neste estudo e os estimados pela ANA para cada município. No entanto, o valor total para o estado é relativamente

próximo, sendo o somatório das demandas estimadas pela ANA 65% superior ao das outorgas industriais. Conforme já abordado no **item 2.2**, a metodologia da ANA de estimativa de consumo é baseada em número de empregos industriais ativos (proveniente do Rais) e de coeficientes de demanda de água por funcionário para diferentes segmentos industriais de acordo com o Cnae 2.0, enquanto este estudo aborda a demanda industrial a partir das outorgas concedidas e vigentes para a indústria.


Quanto à oferta de esgoto, é esperado que os dados obtidos no estudo fossem superiores aos apresentados no SNIS 2015, uma vez que a variável Q_r (vazão de referência) foi determinada, prioritariamente, a partir das vazões de projeto das ETEs (*vide* item 2.3.2), ou seja, indicam a capacidade de tratamento das plantas e não necessariamente a vazão média afluente. Os dados constantes no SNIS, por sua vez, são declarados por "companhias estaduais, empresas e autarquias municipais, empresas privadas e, em muitos casos, pelas próprias prefeituras, por meio de suas secretarias ou departamentos, todos denominados no SNIS como prestadores de serviço" (SNSA/MCIDADES, 2016, p. 1) e referem-se às vazões afluentes às estações.

Entretanto, vale ressaltar que, nos bancos de dados estaduais e federais analisados, foram detectadas diversas ETEs que não apresentavam informações de medição de vazão afluente, o que indica que alguns dados declarados ao SNIS são possivelmente fruto de estimativa a partir de dados de população e/ou consumo de água *per capita*. Outro aspecto a ser ressaltado é que este estudo avalia a capacidade de tratamento de esgotos dos municípios, o que não necessariamente corresponde às vazões de esgotos gerados em cada cidade, uma vez que, principalmente em regiões metropolitanas conurbadas, o esgoto de um município pode ser tratado em outro. Por fim, o somatório de Q_r resultou em valor 45% superior ao das vazões de esgoto tratado apresentadas no SNIS 2015.

Além da avaliação das outorgas contidas no raio de ETE individualmente e da vazão outorgada por município, realizaram-se identificação e quantificação, também por município, das outorgas contidas dentro do raio de qualquer ETE. Ou seja, foram agrupadas (dissolvidas) áreas definidas pelo raio de 10 km no entorno de cada ETE e contabilizadas as outorgas que se encontram no raio de 10 km de qualquer planta do município. Esse valor

é, evidentemente, distinto da soma direta das vazões outorgadas próximas a cada estação no município, dado que a mesma outorga comumente encontra-se próxima a mais de uma planta. O mapa a seguir ilustra o conceito apresentado.

Figura 15 - Mapa de agrupamento das áreas de influência das ETEs por município

Fonte: ANA (2016, 2017b) e Igarn (2017). Elaboração: Fukasawa (2017).

Denominou-se Q_{out} ' o valor do somatório, por município, das vazões outorgadas contidas dentro do raio de 10 km no entorno de qualquer ETE. Dessa análise, resulta o seguinte quadro, ordenado em ordem decrescente de Q_{out} '. São apresentados também os valores de vazão de referência das ETEs (Q_r) e o número de estações por município. Vale ressaltar que essa avaliação foi realizada considerando-se somente as ETEs existentes e que foram excluídos os municípios que não possuem nenhuma ETE (e, portanto, Q_{out} ' automaticamente igual a zero).

73

Tabela 28 - $\mathbf{Q}_{\mathrm{out}}$ ' e tratamento de esgoto agregados por município

Município	Qout' (I/s)	N° out.	Qr (l/s)	N° ETEs
São Gonçalo do Amarante	304,0	45	28,6	4
Natal	298,5	44	714,1	7
Carnaubais	157,1	4	5,5	1
Pendências	119,5	4	27,1	1
Alto do Rodrigues	119,5	4	0,6	1
Acari	58,8	1	6,3	1
Ceará-Mirim	43,5	3	15,2	1
Mossoró	10,3	7	142,9	5
Macau	4,7	1	37,5	1
Currais Novos	4,6	3	32,0	1
Lagoa Nova	3,8	3	3,7	1
Jucurutu	1,5	1	5,3	1
Parelhas	0,7	2	11,6	1
São Rafael	0,1	1	13,6	1
Santana do Seridó	0,0	1	0,1	1
Caiçara do Rio do Vento	0	0	0,3	1
Pau dos Ferros	0	0	12,2	1
Santa Cruz	0	0	42,6	1
Touros	0	0	4,4	1
Afonso Bezerra	0	0	0,6	1
Pedro Avelino	0	0	0,5	1
Santo Antônio	0	0	3,5	1
Pedro Velho	0	0	4,2	1
São Tomé	0	0	0,6	1
Espírito Santo	0	0	7,6	1
Nova Cruz	0	0	49,2	1
Florânia	0	0	18,2	1
Lajes	0	0	5,5	1

Fonte: adaptado de ANA (2016, 2017b) e Igarn (2017).

Nota-se que o município de São Gonçalo do Amarante, por exemplo, possui valor de Q_{out} ' (304 l/s) superior ao de Natal (299 l/s), ainda que este possua maior vazão outorgada em seu território. Isso ocorre porque as ETEs de São Gonçalo do Amarante contemplam, além de suas próprias outorgas, as de Natal e Macaíba. Outro caso relevante é o de Carnaubais, que, apesar de praticamente não apresentar outorgas industriais dentro de seus limites (0,4 l/s), possui uma ETE próxima às mais importantes outorgas de Alto do Rodrigues, resultando em valor de Q_{out} ' (157 l/s), inclusive maior que o de Alto do Rodrigues (120 l/s), ou seja, a ETE Carnaubais (Carnaubais) está mais próxima às outorgas de Alto de Rodrigues do que a própria ETE do município, a ETE Alto do Rodrigues (Alto do Rodrigues).

3.1 Considerações iniciais

A estimativa de custos foi realizada, dentro do escopo da primeira etapa do estudo (CNI, 2017), para a Região Metropolitana de São Paulo (RMSP), tendo por base o panorama de saneamento local e os custos da Companhia de Saneamento Básico do Estado de São Paulo (Sabesp) e visa a apresentar cenários possíveis de infraestrutura genérica e viável a ser projetada para o fornecimento de água de reúso não potável para fins industriais, bem como estimar o Capex (custos de capital – *capital expenditures*) e Opex (custos de operação e manutenção – *operational expenditures*) associados a respectivos custos médios finais, de forma a orientar tanto os clientes consumidores (industriais) quanto as empresas fornecedoras dos serviços de suprimento de água de reúso para viabilizar a implantação de eventuais distritos industriais nos diversos municípios, ou grupos de municípios, do Brasil.

Uma vez que a estimativa foi elaborada tendo essencialmente por base uma região específica (RMSP) e a experiência de custos da concessionária local, estudos específicos devem ser conduzidos para cada área de estudo a ser mais profundamente analisada. Ainda assim, os resultados aqui obtidos podem ser utilizados como referência para o subsídio a estudos em outras regiões brasileiras.


Os custos atribuídos ao reúso de água são exclusivamente os custos marginais associados às unidades de tratamento, distribuição e reservação complementares necessárias para obtenção e uso de água de reúso com qualidade compatível com usos industriais não potáveis. Os custos primários associados aos sistemas de tratamento convencionais de esgotos não podem ser atribuídos ao reúso de água, pois são legalmente necessários para o atendimento aos padrões de emissão estabelecidos pelas Portarias Conama nº 357 e nº 430 e legislações estaduais.

Portanto, para a estimativa de Capex e Opex, são elencados os seguintes custos:

- a) Aquisição do efluente tratado: compra do efluente tratado pela concessionária.
- b) Tratamento complementar para adequação da qualidade: adequação do efluente às exigências de qualidade para uso não potável industrial.
- Linha primária de distribuição: transporte de água de reúso até as proximidades dos pontos de uso.
- d) Reservação final: reservação da água de reúso nas proximidades dos pontos de uso.

A Figura 16 ilustra, de maneira esquemática, as etapas elencadas na composição de custos.

Figura 16 - Custos primários e marginais associados ao reúso

Fonte: CNI (2017).

A estimativa de custos deste estudo foi realizada considerando-se as etapas "B", "C" e "D", uma vez que a aquisição de efluente tratado ("A") é dependente de condições específicas de cada concessionária e do arranjo contratual com o produtor de água de reúso. Para a composição total de valores, considerando-se o custo A, basta somar seu valor, em R\$/m³, aos resultados obtidos pela estimativa.

Uma vez que as principais estações da RMSP são compostas por sistemas biológicos secundários de lodos ativados convencional, optou-se pela adaptação das plantas para que produzam efluentes com qualidade adequada para uma grande maioria de tipos de reúso⁸. Essa adaptação, que praticamente não envolve obras civis, consiste na instalação de unidades de membranas de ultrafiltração nas próprias câmaras de aeração dos sistemas de lodos ativados ou em câmaras adjacentes à câmara de aeração.

Na ausência de infraestrutura tratamento de esgotos em locais onde se pretende implantar a prática de reúso de água, deverão ser avaliados os custos relativos à implantação de sistemas completos de tratamento, cujas concepções de projeto dependem de condições e de disponibilidades locais. Para outros sistemas de tratamento existentes, como lagoas de estabilização ou filtros biológicos etc., deverão ser estudados sistemas complementares de tratamento, tais como filtros de areia ou sistemas de membranas de ultrafiltração, dependendo da qualidade da água de reúso a ser produzida.

3.2 Concepção do projeto genérico

O projeto genérico para estimativa de custos foi realizado, primeiramente, com base em diferentes vazões, distâncias de distribuição e volumes de reservação final. Adotaram-se vazões de 50 l/s a 500 l/s e linhas de distribuição com comprimento total de 9,0 km a 13,0 km, havendo sempre trecho por recalque (variando de 4,0 km a 8,0 km) e por conduto forçado por gravidade (5,0 km). Os diversos cenários de distribuição foram calculados para os diâmetros econômicos de recalque e diâmetro da adutora por gravidade que garantam que a perda de

⁸ Estipulou-se qualidade de água de reúso como aquela suficiente para uso em torres de resfriamento.

carga não ultrapasse a 15 mcaº em toda a sua extensão, garantindo-se sempre residual de pressão mínimo de 15 mca no ponto de consumo.

Em suma, as variáveis aplicadas à modelagem são:

Vazões (Q):

- Q₁ = 50 l/s.
- $Q_2 = 100 \text{ l/s}.$
- $Q_3 = 200 \text{ l/s}.$
- $Q_{\Delta} = 500 \text{ l/s}.$

Linha de distribuição:

- Trecho de recalque:
 - * $L_{R1} = 4.0 \text{ km}.$
 - $L_{po} = 8.0 \text{ km}.$
 - * Material da tubulação: ferro fundido dúctil K910.
 - * Perdas de carga com ΣK_s^{11} (sucção) = 2,25 e ΣK_s (recalque) = 9,3 para ambas as extensões.
 - * Desnível geométrico $(H_a^{12}) = 50,0 \text{ m}.$
- Trecho de conduto forçado por gravidade:
 - * $L_{G} = 5.0 \text{ km}.$
 - * Material da tubulação: ferro fundido dúctil K9.
 - * Perdas de carga com $\Sigma Ks = 9,0$.
 - * Desnível geométrico (H_a) = 30,0 m.

Reservatório de distribuição:

- Para Q = 50 l/s, volume de 500 m³.
- Para Q = 100 l/s, volume de 1.000 m³.

⁹ mca: metro de coluna d'água, unidade de pressão comumente utilizada em projetos de saneamento e hidráulica.

¹⁰ K9: nomenclatura indicativa da classe de pressão do tubo.

¹¹ ΣKs: somatório dos coeficientes singulares de perda de carga hidráulica, valor utilizado no cálculo das perdas de energia em tubulações em carga.

¹² Desnível geométrico: diferença de cota (altura) entre o nível d'água inicial e final de uma linha de distribuição.

- Para Q = 200 l/s, volume de 1.500 m³.
- Para Q = 500 l/s, volume de 2.000 m³.

Portanto, a associação entre as diferentes variáveis leva à criação de oito cenários distintos, como segue na tabela a seguir.

Tabela 29 - Cenários para estimativas de custos

	Lir	Reservatório			
Vazão (I/s)	Trecho de Trecho por gravidade (km) (km)		Comprimento total (km)	de distribuição (m³)	
50	4,0	5.0	9,0	500	
50	8,0	5,0	13,0	500	
100	4,0	F.O.	9,0	1.000	
100	8,0	5,0	13,0		
200	4,0	F.O.	9,0	1 500	
200	8,0	5,0	13,0	1.500	
500	4,0	5.0	9,0	2,000	
500	8,0	5,0	13,0	2.000	

Fonte: CNI (2017).

3.3 Estimativas de Capex

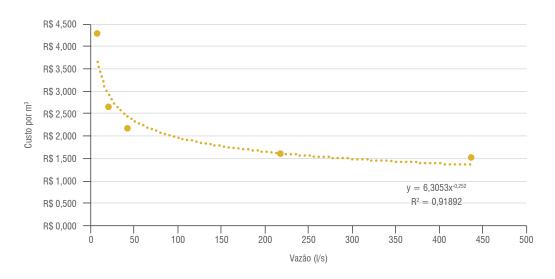
3.3.1 Adaptação das estações de tratamento de lodos ativados

A adaptação de sistemas de lodos ativados convencional a sistemas de biomembranas (MBRs¹³) foi considerada como a instalação de sistemas de membranas completos, incluindo as membranas de ultrafiltração com poros de 0,035 μm¹⁴, estruturas de suporte, válvulas, controles, bombas de lóbulo, medidores de vazão e sopradores (*Puron Pulsion MBR*, fibra oca, *Koch Membrane Systems* – KMS) estimados por preços unitários, conforme as vazões referidas para este estudo. A avaliação dos preços das estações produtoras de água de reúso completas foi realizada em função das vazões médias produzidas e traduzidas em R\$/m³ tratado por ano.

¹³ MBR: membrane bioreactor.

¹⁴ μm: micrômetro, unidade de medida de comprimento equivalente à milionésima parte de um metro.

O valor médio de Capex foi estimado por meio de extrapolação matemática considerada a partir dos dados, os quais são oriundos de estações já implantadas, apresentados na Tabela 30:


Tabela 30 - Dados de base para estimativa de Capex em função da vazão

Vazão L/s	8,76	21,90	43,81	219,04	438,08	
Vazão (m³/d)	757,00	1.892,50	3.785,00	18.925,00	37.850,00	
Vazão (m³/ano)	276.305	690.763	1.381.525	6.907.625	13.815.250	
Capex (R\$)	R\$ 1.174.824	R\$ 1.814.184	R\$ 2.946.384	R\$ 10.954.368	R\$ 20.571.408	
R\$/m³	R\$/m³ 4,25		2,13	1,59	1,49	

Fonte: elaborado pelos autores (2018).

Da Tabela 30, foram segregados os valores de custo de capital relacionados à vazão e seu indicador de R\$/m³. Com base nos dados de vazões e respectivos custos unitários dos investimentos para construção, fornecimento e montagem dos equipamentos (membranas, bombas, instrumentações, medidores etc.), foi gerado o gráfico mostrado na Figura 17 com a respectiva equação de aderência aos dados e seu coeficiente de determinação, R².

Figura 17 - Gráfico dos custos de capital correspondentes à adaptação de ETEs existentes para produção de água de reúso (R\$/m³)

Fonte: adaptado de CNI (2017).

Portanto, a curva de custo unitário de capital adotada é:

Custo Unitário CAPEX $(R\$/m^3) = 6,3053 \times [Q(l/s)]^{-0.252}$

3.3.2 Sistema elevatório e obras lineares

Para a avaliação dos custos de implantação de um projeto, mesmo que de forma genérica, para cada sistema de bombeamento e respectiva linha de recalque, devem ser considerados os diversos fatores que influenciam em seus custos finais. Os fatores intervenientes que afetam o custo de implantação de um projeto são os listados a seguir:

- Vazões de projeto.
- Extensões da adutora (recalque).
- Tipos de bombas.
- Volumes de reservatórios.
- Desníveis geométricos.
- Preços das tubulações especificadas.
- Preços e materiais utilizados na execução das obras lineares.
- Profundidades das valas projetadas.
- Metodologias de execução.
- Tipo do solo, existência de rocha, charco etc.
- Local da execução da obra.
- Interferências com outras infraestruturas.
- Tipos de pavimentos (asfalto, terra etc.).
- · Preço médio da energia elétrica industrial.

Dessa forma, a definição do binômio potência do conjunto motor-bomba e o respectivo diâmetro das linhas de recalque é fundamentalmente dependente dos preços e de outros aspectos físicos indicados anteriormente. Assim, a melhor maneira para se definir o binômio "potência instalada e diâmetro" da linha de recalque é a definida pela metodologia do diâmetro econômico de "Bresse" aliado à pesquisa de outros binômios (potência x diâmetro) próximos ao diâmetro econômico definido por "Bresse". Sendo

assim, para a definição final do sistema mais econômico, comparam-se os custos de implantação e os gastos de operação, no horizonte do projeto, trazidos ao valor presente. Desse modo, aquele binômio (potência *x* diâmetro) que apresentar o menor valor presente será o escolhido para ser detalhado em projeto básico e executivo.

3.3.2.1 Instalações elevatórias

Os preços das instalações elevatórias completas, incluindo obras civis e eletromecânicas, foram estimados em função das vazões médias a serem desenvolvidas em cada cenário. Portanto, os custos relativos a cada uma das vazões definidas são, conforme a equação a seguir, aderentes à faixa de vazão 50 até 500 l/s.

$$Custo = Q(l/s) \times 2450 \times \left(\frac{Q(l/s)}{500}\right)^{-0.32}$$

Custo atual = Custo (2010) x (1,00 + 0,50)

Nota: esta equação foi desenvolvida pelo eng. Lineu A. de Almeida com base na média de preços das instalações elevatórias, de diversas vazões, contratadas pela Sabesp, com I₀ de junho de 2010 e considerado atualização monetária de 50% para recomposição de preços.

3.3.2.2 Linha de recalque e adutora por gravidade

Foram considerados variados tipos de escoramentos e uma porcentagem de asfalto para a definição dos preços médios de fornecimento e instalação das obras lineares, além de profundidade máxima das valas de até 2,50 m, conforme segue:

Tabela 31 - Estimativa de custos para obras lineares

			Tipos d	le Escoramo	Asfalto	Preços médios		
Diâmetro	Material	Sem	Sem Pontaletes Descontinuo Continuo T		Total	extensão total	(R\$/m)	
50	PVC	0,80	0,17	0,03	0,00	100%	40%	86,67
75	HD - K9	0,80	0,17	0,03	0,00	100%	40%	314,76
100	HD - K9	0,70	0,25	0,05	0,00	100%	40%	340,34
150	HD - K9	0,70	0,22	0,08	0,00	100%	40%	430,98
200	HD - K9	0,40	0,30	0,20	0,10	100%	40%	563,14
250	HD - K9	0,30	0,25	0,25	0,20	100%	40%	727,13
300	HD - K9	0,10	0,10	0,40	0,40	100%	40%	883,37
400	HD - K9	0,00	0,25	0,35	0,40	100%	40%	1.159,90
500	HD - K9	0,00	0,15	0,35	0,50	100%	40%	1.541,20
600	HD - K9	0,00	0,00	0,45	0,55	100%	40%	2.035,31
700	HD - K9	0,00	0,00	0,40	0,60	100%	40%	2.761,35
800	HD - K9	0,00	0,00	0,40	0,60	100%	40%	3.320,49
900	HD - K9	0,00	0,00	0,35	0,65	100%	40%	3.861,69
1.000	HD - K9	0,00	0,00	0,30	0,70	100%	40%	4.420,61

Fonte: elaborado pelos autores (2018).

Nota: os preços desenvolvidos estão fundamentados com base na média de preços de diversas obras lineares, contratadas pela Sabesp, com $I_{\scriptscriptstyle 0}$ de junho de 2010 e considerada uma atualização monetária 50% para recomposição de preços.

3.3.3 Reservatórios de distribuição

Os preços dos reservatórios de distribuição foram considerados em função das vazões médias a serem desenvolvidas em cada cenário. Assim, os custos são, conforme a equação a seguir, aderentes para volumes variando de 100 m³ até 2.000 m³.

$$Custo(2010) = [Volume \times 448 \times \left(\frac{Volume}{500}\right)^{-0.37} + (Volume)^{1.465}]$$
 Custo atual = Custo (2010) x (1,00 + 0,50)

Nota: esta equação foi desenvolvida pelo eng. Lineu A. de Almeida com base na média de preços de diversos reservatórios, de diversos volumes, contratados pela Sabesp, com I₀ de junho de 2010 e considerada uma atualização monetária de 50% para recomposição de preços.

3.4 Estimativas de Opex

3.4.1 Energia elétrica

O insumo energia elétrica é fator de grande influência sobre a composição de custos. Sendo assim, realizou-se levantamento das tarifas de distribuição das diversas fornecedoras e buscou-se um valor médio, de forma a não restringir a avaliação a uma reduzida área de atuação. Além disso, com base no valor médio utilizado no trabalho e o adotado em cada região, pode-se ponderar, de forma mais precisa, o custo da energia.

Foram utilizadas tarifas praticadas pelas principais distribuidoras das regiões Sudeste e Centro-Oeste para classe Industrial, a valores de outubro de 2015 com reajuste para abril de 2016.

Tabela 32 - Valores utilizados para composição de tarifa média de energia elétrica

Distribuidora	Tarifa (R\$/MWh)				
Escelsa	454,62				
CPFL Sta. Cruz	454,22				
CEMIG	445,72				
CPFL Paulista	437,95				
Energisa MS	430,35				
Energisa MG	430,24				
Elektro	427,24				
CPFL – Piratininga	419,77				
Copel	412,27				
Vale do Paranapanema	400,08				
Caiua	397,59				
Light	395,76				
CPFL Leste Paulista	390,30				
CPFL Mococa	390,28				
Bandeirante	388,32				

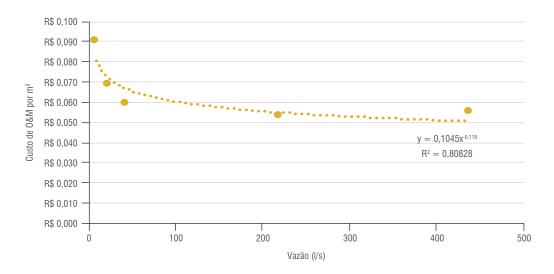
Distribuidora	Tarifa (R\$/MWh)				
Bragantina	385,04				
Eletropaulo	378,04				
CPFL Sul Paulista	365,66				
Média	411,30				
Revisão Tarifaria de abr. 2016	6,560%				
Média corrigida para o período abril/16	438,28				

Fonte: páginas das concessionárias. Tarifas vigentes em outubro de 2015.

Portanto, adotou-se, para estimativa dos custos com energia elétrica, valor de **R\$ 0,43828/kWh**.

3.4.2 Adaptação das estações de tratamento de lodos ativados

Com base nos dados de vazões e respectivos custos unitários de O&M (Tabela 33), exceto gastos de energia elétrica, é gerado o gráfico mostrado na Figura 18 com a respectiva equação de aderência aos dados fornecidos.


Tabela 33 - Dados de base para estimativa de Opex em função da vazão

Vazão L/s	8,76	21,90	43,81	219,04	438,08	
Vazão (m³/d)	757,00	757,00 1.892,50		18.925,00	37.850,00	
Vazão (m³/ano)	276.305 690.763		1.381.525	6.907.625	13.815.250	
Opex (R\$/ano)	R\$ 298.368	R\$ 570.096	R\$ 985.680	R\$ 4.406.256	R\$ 9.116.208	
R\$/m³	1,08	0,83	0,71	0,64	0,66	
Valor de reposição de membranas	reposição de R\$ 53.280		R\$ 266.400	R\$ 1.297.368	R\$ 2.586.744	

Fonte: elaborado pelos autores (2018).

O gráfico a seguir dispõe a correlação entre vazão (l/s) e Opex (R\$/m³) a partir dos dados da Tabela 33, bem como apresenta a curva de tendência e a sua respectiva aderência (coeficiente de determinação, R²).

Figura 18 - Gráfico dos custos de operação e manutenção correspondentes à adaptação de ETEs existentes para produzir água de reúso (R\$/m³)

Fonte: adaptado de CNI (2017).

A curva de custo unitário de O&M adotada é:

Custo Unitário ETAR O&M
$$(R\$/m^3) = 0,1045 \times [Q(l/s)]^{-0,119}$$

Nota: para cada cenário, de acordo com o porte, a O&M da estação será variável composta pelo consumo de produtos químicos, da manutenção propriamente dita e dos custos de pessoal.

O consumo de energia elétrica foi considerado à parte, com valor fixo de 1,10 KWh/m³ tratado.

3.4.3 Sistema elevatório

Os custos de operação do sistema elevatório foram estimados a partir das seguintes premissas:

- Salário mais encargos para um empregado = R\$ 2.500/mês.
- Verba para manutenção = R\$ 0,01 /m³ bombeado.
- O custo total mensal em função da potência instalada necessária para cada cenário e da vazão bombeada.

Nota: para cada cenário, de acordo com o porte, a O&M da estação elevatória será variável e os custos de pessoal serão considerados fixos. O consumo de energia elétrica está considerado à parte.

Assumiu-se necessidade de 1 empregado para operar e manter a estação elevatória e correr as linhas adutoras para executar manobras, revisar peças e acessórios e manter limpas as áreas e faixas das adutoras e reservatório de distribuição.

3.5 Plano de negócio

Considerou-se, para avaliação do plano de negócio, o período de exploração dos serviços de projetos associados de água de reúso de 30 anos.

- A taxa de atratividade definida em 12% ao ano (a.a.).
- Demais impostos com alíquotas normais: PIS/Cofins 9,25% e IR e CSLL de 34%.
- Desconsiderados impostos do tipo ISS.
- A taxa de contribuição para agência reguladora estimada em 0,5%.
- A depreciação considerada em 30 anos, e a execução integral das obras se dará no primeiro ano e a operação inicia-se a partir do segundo ano.

Os custos estimados para cada um dos oitos cenários levam em consideração aplicação de tarifa que iguala a Taxa Interna de Retorno (TIR) do projeto à taxa de atratividade considerada, resultando em o Valor Presente Líquido (VPL) igual a zero. Também se considerou que toda a água de reúso será vendida. Neste caso, o *payback* será de 30 anos e o ganho da empresa que explorará o serviço da água de reúso terá o ganho de capital de 12% a.a. igual à taxa de atratividade.

Nota: caso a tarifa média praticada seja superior ao custo calculado, a TIR do projeto será superior à taxa de atratividade, o VPL do projeto será positivo e o plano de negócio será mais atrativo aos investidores, tendo sua viabilidade melhorada.

3.6 Resultados

Os valores de **Capex** (investimento total, incluindo a adaptação das ETEs de lodos ativado e as linhas de adução com recalque e reservatórios de distribuição) apresentado a seguir referem-se aos investimentos no ano 1, enquanto as reposições estão consideradas ao longo do tempo.

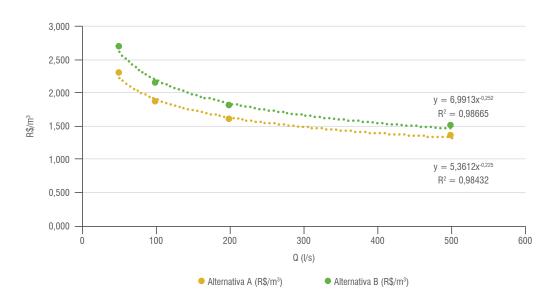
Observação: os custos a seguir, nos diversos cenários, não incluem o preço por m³ fornecido do efluente da planta de tratamento de esgotos por lodos ativados. Para estimar o custo total final considerando-se essa etapa, o valor deverá ser somado aos valores estimados neste estudo.

Os custos estimados por cenário foram divididos conforme o comprimento total da linha de distribuição, sendo:

- Alternativa A: linha de recalque 4,0 km e linha por gravidade 5,0 km.
- Alternativa B: linha de recalque 8,0 km e linha por gravidade 5,0 km

Portanto, cada alternativa engloba quatro cenários distintos, conforme tabela a seguir.

Tabela 34 - Custos estimados relativos ao sistema de reúso completo


Vazão (l/s)	Alternativa A (R\$/m³)	Alternativa B (R\$/m³)		
50	2,283	2,682		
100	1,866	2,142		
200	1,586	1,794		
500	1,357	1,496		

Fonte: CNI (2017).

O gráfico a seguir dispõe a correlação entre vazão (l/s) e custos totais (R\$/m³), a partir dos dados da Tabela 34, bem como apresenta a curva de tendência e sua respectiva aderência (coeficiente de determinação, R²) para cada uma das alternativas.

89

Figura 19 - Gráfico dos custos estimados relativos ao sistema de reúso completo

Fonte: CNI (2017).

As equações de custos estimadas em R\$/m³ e para cada uma das alternativas nos intervalos de vazões estudadas são apresentadas a seguir:

Alternativa A: $Custo = 5,361 \times [Q]^{-0,225}$

Alternativa B: $Custo = 6,9913 \times [Q]^{-0,252}$

3.7 Resumo e comentários

A seguir é apresentado o resumo dos resultados obtidos das estimativas de Capex e Opex do sistema completo de reúso para cada vazão considerada e para as alternativas de adutoras com as respectivas unidades de recalque e reservatórios de distribuição.

Tabela 35 - Resumo dos custos estimados de Capex e Opex para os cenários propostos

Cenário (l/s)		Linha de distrib	uição				
	Trecho de recalque (km)	Trecho por gravidade (km)	Comprimento total (km)	Reservatório de distribuição (m³)	Capex (R\$)	Opex (R\$/ano)	Custo (R\$/m³)
50	4	_	9	500	11.670.950	1.095.265	2,283
50	8	5	13	500	14.579.468	1.148.949	2,682
100	4	5	9	1000	16.579.354	2.199.339	1,866
100	8	5	13	1000	20.112.851	2.358.622	2,142
000	4	5	9	1500	25.808.257	4.109.659	1,586
200	8	5	13	1500	31.973.075	4.205.003	1,794
	4	E	9	2000	44.991.535	10.468.610	1,357
500	8	5	13	2000	53.132.787	11.003.443	1,496

Fonte: CNI (2017).

Os valores estimados e resumidos na tabela acima contemplam os custos "B", "C" e "D" (vide Figura 16). O custo "A", relativo à compra de efluente secundário, dependerá de fatores de arranjo institucional, contrato de vazões e regulação da qualidade. Mesmo que se trate de um efluente ainda a ser submetido a tratamento, é fundamental que haja segurança nas quantidades e qualidades fornecidas à produção de água industrial, permitindo a constância no fornecimento do produto às indústrias. Dessa maneira, é importante que o efluente secundário seja entendido como objeto sujeito à regulação contratual.

Torna-se evidente que o valor por m³ decresce conforme se aumentam as vazões tratadas, tornando sistemas de 500 l/s economicamente mais viáveis que os de 50 l/s, por exemplo. Ao mesmo tempo, o custo, assim como é esperado, aumenta significativamente com o acréscimo de distância de distribuição da água, o que pode ser observado pelo distanciamento entre as curvas das alternativas "A" e "B". As equações

de curva exponenciais da correlação vazão x R\$/m³ podem ser utilizadas para interpolações e consequente determinação do resultado da função para valores intermediários não previstos neste estudo. A lógica aplicada poderá também ser expandida para outras vazões e considerações iniciais (distâncias, capacidades de reservação etc.), chegando-se a novas curvas e equações e, consequentemente, modelagens distintas.

AGÊNCIA NACIONAL DE ÁGUAS - ANA. Banco de dados sobre ETEs estaduais e municipais com abrangência nacional: ano base 2013. Brasília: ANA, 2016.

AGÊNCIA NACIONAL DE ÁGUAS - ANA. **Água na indústria:** uso e coeficientes técnicos. Brasília: ANA. 2017a.

AGÊNCIA NACIONAL DE ÁGUAS - ANA. **Planilha de outorgas federais emitidas**. 2017b. Disponível em: http://www3.ana.gov.br/portal/ANA/regulacao/principais-servicos/outorgas-emitidas. Acesso em: 14 set. 2017.

AGÊNCIA NACIONAL DE ÁGUAS - ANA. **Programa de consolidação do pacto nacional pela gestão das águas (PROGESTÃO).** 2017c. Disponível em: http://progestao.ana.gov.br. Acesso em: 02 nov. 2017.

AGÊNCIA NACIONAL DE ÁGUAS - ANA. **Sistema Nacional de Informações sobre Recursos Hídricos (SNIRH)**: balanço hídrico quantitativo. 2017d. Disponível em: http://www.snirh.gov.br/snirh/snirh-1/ acesso-tematico/balanco-hidrico>. Acesso em: 05 nov. 2017.

COMPANHIA DE ÁGUAS E ESGOTOS DO RIO GRANDE DO NORTE - CAERN. Informações sobre as ETEs sob operação da companhia. Natal: CAERN, 2017.

CONFEDERAÇÃO NACIONAL DA INDÚSTRIA - CNI. Perfil da indústria nos estados 2014. Brasília: CNI, 2014.

CONFEDERAÇÃO NACIONAL DA INDÚSTRIA - CNI. **Reúso de efluentes:** metodologia para análise do potencial do uso de efluentes tratados para abastecimento industrial. Brasília: CNI, 2017.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **Brasil em síntese**: cidades. 2017a. Disponível em: https://cidades.ibge.gov.br. Acesso em: 24 out. 2017.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. **PIB dos municípios brasileiros**. 2017b. Disponível em: https://sidra.ibge.gov.br/tabela/5938. Acesso em: 28 set. 2017.

INSTITUTO BRASILEIRO DE GEOGRAFIA E ESTATÍSTICA - IBGE. CNAE20_EstruturaDetalhada. 2017c. Disponível em: https://concla.ibge.gov.br/images/concla/downloads/revisao2007/PropCNAE20/CNAE20_EstruturaDetalhada.xls. Acesso em: 29 set. 2017.

INSTITUTO DE GESTÃO DE ÁGUAS DO ESTADO DO RIO GRANDE DO NORTE - IGARN. **Banco de dados sobre outorgas estaduais industriais.** Natal: IGARN, 2017.

MINISTÉRIO DO TRABALHO E EMPREGO - MTE. **Microdados RAIS e CAGED**. Disponível em: <ftp://ftp.mtps.gov.br/pdet/microdados/>. Acesso em: 2 out. 2017a.

MINISTÉRIO DO TRABALHO E EMPREGO - MTE. **RAIS**: dados estaduais. 2017b. Disponível em: http://pdet.mte.gov.br/rais>. Acesso em: 2 de outubro de 2017

SECRETARIA NACIONAL DE SANEAMENTO AMBIENTAL DO MINISTÉRIO DAS CIDADES - SNSA/MCIDADES. **Sistema Nacional de Informações sobre Saneamento**: diagnóstico dos serviços de água e esgoto: 2015. Brasília: SNSA/MCIDADES, 2016. Disponível em: http://www.snis.gov.br/diagnostico-agua-eesgotos/diagnostico-ae-2015>. Acesso em: 18 jun. 2018.

ID	FONTE	CÓDIGO	MUNICÍPIO	NOME ETE	NOME ETE + MUNICÍPIO	QR (L/S)	PROCESSO	LAT	LON	N° DE OUTORGASQOUT (L/S)	QOUT/QR
PE_ETE001	AMBOS	2611606	RECIFE	ETE CABANGA	ETE CABANGA - RECIFE	920,6	PRELIMINAR/ PRIMÁRIO	-8,080605	-34,893324	6478,90046295	0,09
PE_ETE002	AMBOS	2610707	PAULISTA	ETE JANGA	ETE JANGA - PAULISTA	613,4	LODOS ATIVADOS	-7,927483	-34,846356	57109,0104167	0,18
PE_ETE003	ANA	2609600	OLINDA	ETE PEIXINHOS	ETE PEIXINHOS - OLINDA	470,0	UASB + POLIMENTO	-8,017493	-34,878074	63110,7233796	0,24
PE_ETE004	COMPESA	2611101	PETROLINA	ETE IZACOLÂNDIA	ETE IZACOLÂNDIA - PETROLINA	384,0	LAGOAS	-9,382376	-40,523625	619,44989853	0,05
PE_ETE005	AMBOS	2611606	RECIFE	ETE IMBIRIBEIRA (DANCING DAYS)	ETE IMBIRIBEIRA (DANCING DAYS) - RECIFE	290,0	UASB + POLIMENTO	-8,10065	-34,919584	7691,02199073	0,31
PE_ETE006	AMBOS	2604106	CARUARU	ETE CARUARU I	ETE CARUARU I - CARUARU	250,0	UASB + POLIMENTO	-8,283541	-35,937134	10	0,00
PE_ETE007	COMPESA	2611101	PETROLINA	ETE CENTRO - NOVA	ETE CENTRO - NOVA - PETROLINA	186,0	UASB + POLIMENTO	-9,402815	-40,471597	819,65601218	0,11
PE_ETE009	AMBOS	2611606	RECIFE	ETE MINERVA	ETE MINERVA - RECIFE	171,1	UASB + POLIMENTO	-7,996579	-34,908736	69114,6238426	0,67
PE_ETE010	AMBOS	2611101	PETROLINA	ETE JOÃO DE DEUS	ETE JOÁO DE DEUS - PETROLINA	136,0	LAGOAS	-9,350136	-40,533206	515,98718924	0,12

ID	FONTE	CÓDIGO	MUNICÍPIO	NOME ETE	NOME ETE + MUNICÍPIO	QR (L/S)	PROCESSO	LAT	LON	N° DE OUTORGASQOUT (L/S)	QOUT/QR
PE_ETE011	ANA	2614501	SURUBIM	ETE SURUBIM	ETE SURUBIM - SURUBIM	113,5	UASB + POLIMENTO	-7,821839	-35,742649	0	0,00
PE_ETE012	AMBOS	2611101	PETROLINA	ETE OURO PRETO	ETE OURO PRETO - PETROLINA	108,0	LAGOAS	-9,382728	-40,524714	619,44989853	0,18
PE_ETE013	ANA	2600054	ABREU E LIMA	ETE CAETÉS	ETE CAETÉS - ABREU E LIMA	102,8	LAGOAS	-7,917172	-34,905711	64114,9131944	1,12
PE_ETE014	AMBOS	2611101	PETROLINA	ETE COHAB IV	ETE COHAB IV - PETROLINA	91,0	LAGOAS	-9,386056	-40,527222	723,72387113	0,26
PE_ETE015	AMBOS	2616407	VITÓRIA DE SANTO ANTÃO	ETE VITÓRIA DE SANTO ANTÃO	ETE VITÓRIA DE SANTO ANTÃO - VITÓRIA DE SANTO ANTÃO	73,9	UASB + POLIMENTO	-8,10719722	-35,27155556	97,77488426	0,11
PE_ETE016	AMBOS	2611101	PETROLINA	ETE MANOEL DOS ARROZ	ETE MANOEL DOS ARROZ - PETROLINA	67,0	LAGOAS	-9,379408	-40,507781	721,96131405	0,33
PE_ETE017	AMBOS	2607208	IPOJUCA	ETE NOSSA SENHORA DO Ó	ETE NOSSA SENHORA DO Ó - IPOJUCA	64,0	LAGOAS	-8,452041	-35,011803	55,650462963	0,09
PE_ETE018	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE MARCOS FREIRE	ETE MARCOS FREIRE - JABOATÃO DOS GUARARAPES	61,9	LAGOAS	-8,143011	-34,966338	7996,40393518	1,56
PE_ETE019	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE CURADO IV	ETE CURADO IV - JABOATÃO DOS GUARARAPES	53,0	LAGOAS	-8,076658	-34,994811	5278,34837963	1,48
PE_ETE020	AMBOS	2611606	RECIFE	ETE ENGENHO DO MEIO / RODA DE FOGO	ETE ENGENHO DO MEIO / RODA DE FOGO - RECIFE	46,1	FOSSA + FILTRO ANAERÓBIO	-8,063328	-34,939619	6884,4999999	1,83
PE_ETE021	AMBOS	2614204	SIRINHAÉM	ETE SIRINHAÉM	ETE SIRINHAÉM - SIRINHAÉM	42,0	LAGOAS	-8,59879722	-35,10794722	10	0,00
PE_ETE022	AMBOS	2601409	BARREIROS	ETE BARREIROS	ETE BARREIROS - BARREIROS	41,4	LAGOAS	-8,82666667	-35,17479722	00	0,00
PE_ETE023	AMBOS	2602902	CABO DE SANTO AGOSTINHO	ETE CABO (PARQUE PIRAPAMA)	ETE CABO (PARQUE PIRAPAMA) - CABO DE SANTO AGOSTINHO	41,4	LAGOAS	-8,295489	-35,02623	31179,8012732	4,34
PE_ETE024	AMBOS	2611903	RIO FORMOSO	ETE RIO FORMOSO	ETE RIO FORMOSO - RIO FORMOSO	40,0	UASB + POLIMENTO	-8,65526944	-35,14778333	10	0,00
PE_ETE025	AMBOS	2614204	SIRINHAÉM	ETE BARRA DE SIRINHAÉM	ETE BARRA DE SIRINHAÉM - SIRINHAÉM	36,0	LAGOAS	-8,62309444	-35,06958056	20,034722222	0,00
PE_ETE026	AMBOS	2605152	DORMENTES	ETE DORMENTES	ETE DORMENTES - DORMENTES	36,0	LAGOAS	-8,45706	-40,761203	00	0,00
PE_ETE027	ANA	2610707	PAULISTA	ETE ARTHUR LUNDGREN	ETE ARTHUR LUNDGREN - PAULISTA	35,8	LAGOAS	-7,929614	-34,888081	64113,3969907	3,17
PE_ETE028	AMBOS	2610707	PAULISTA	ETE JARDIM PAULISTA	ETE JARDIM PAULISTA - PAULISTA	35,8	LAGOAS	-7,945159	-34,903484	65111,9039352	3,13
PE_ETE029	AMBOS	2602902	CABO DE SANTO AGOSTINHO	ETE GAIBU	ETE GAIBU - CABO DE SANTO AGOSTINHO	35,6	UASB + POLIMENTO	-8,34472	-34,963757	20173,0393519	4,86
PE_ETE030	AMBOS	2609501	NAZARÉ DA MATA	ETE NAZARÉ DA MATA	ETE NAZARÉ DA MATA - NAZARÉ DA MATA	35,0	LAGOAS	-7,737861	-35,212806	22,141203703	0,06
PE_ETE031	ANA	2612604	SANTA MARIA DA BOA VISTA	ETE SANTA MARIA DA BOA VISTA	ETE SANTA MARIA DA BOA VISTA - SANTA MARIA DA BOA VISTA	34,7	LAGOAS	-8,802492	-39,817625	00	0,00

ID	FONTE	CÓDIGO	MUNICÍPIO	NOME ETE	NOME ETE + MUNICÍPIO	QR (L/S)	PROCESSO	LAT	LON	N° DE OUTORGASQOUT (L/S)	QOUT/QR
PE_ETE032	AMBOS	2611101	PETROLINA	ETE LOTEAMENTO RECIFE	ETE LOTEAMENTO RECIFE - PETROLINA	33,0	LAGOAS	-9,369742	-40,478589	819,65601218	0,60
PE_ETE033	AMBOS	2613701	SÃO LOURENÇO DA MATA	ETE PARQUE CAPIBARIBE / SÃO LOURENÇO DA MATA	ETE PARQUE CAPIBARIBE / SÃO LOURENÇO DA MATA - SÃO LOURENÇO DA MATA	31,7	LAGOAS	-8,01531	-35,039744	3468,49537037	2,16
PE_ETE034	AMBOS	2611606	RECIFE	ETE CAÇOTE	ETE CAÇOTE - RECIFE	31,3	LODOS ATIVADOS	-8,099053	-34,925872	7993,49884258	2,99
PE_ETE036	AMBOS	2606002	GARANHUNS	ETE GARANHUNS	ETE GARANHUNS - GARANHUNS	31,1	LAGOAS	-8,863905	-36,452863	43,761574074	0,12
PE_ETE035	AMBOS	2611606	RECIFE	ETE MANGUEIRA	ETE MANGUEIRA - RECIFE	31,1	UASB + POLIMENTO	-8,077831	-34,924787	7388,0474537	2,83
PE_ETE037	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE MURIBECA	ETE MURIBECA - JABOATÃO DOS GUARARAPES	28,1	PRELIMINAR/ PRIMÁRIO	-8,161725	-34,959575	7992,6423611	3,29
PE_ETE038	COMPESA	2611101	PETROLINA	ETE PORTO FLUVIAL	ETE PORTO FLUVIAL - PETROLINA	27,0	LAGOAS	-9,397479	-40,520107	723,72387113	0,88
PE_ETE039	ANA	2611002	PETROLÂNDIA	ETE 2	ETE 2 - PETROLÂNDIA	27,0	LAGOAS	-9,21355614	-38,28466393	00	0,00
PE_ETE040	COMPESA	2609402	MORENO	ETE MORENO 3	ETE MORENO 3 - MORENO	25,4	LAGOAS	-8,124907	-35,080518	87,15625	0,28
PE_ETE041	AMBOS	2611101	PETROLINA	ETE RIO CORRENTE	ETE RIO CORRENTE - PETROLINA	23,0	LAGOAS	-9,394222	-40,552206	723,72387113	1,03
PE_ETE042	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE DOM HELDER CÂMARA	ETE DOM HELDER CÂMARA - JABOATÃO DOS GUARARAPES	22,3	LAGOAS	-8,195275	-34,936292	5126,39236111	1,19
PE_ETE043	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE BARRA DE JANGADA	ETE BARRA DE JANGADA - JABOATÃO DOS GUARARAPES	21,2	LODOS ATIVADOS	-8,218496	-34,934209	4926,04513888	1,23
PE_ETE045	AMBOS	2611101	PETROLINA	ETE COHAB VI)	ETE COHAB VI) - PETROLINA	20,0	LAGOAS	-9,401322	-40,550811	723,72387113	1,19
PE_ETE044	AMBOS	2612208	SALGUEIRO	ETE SALGUEIRO	ETE SALGUEIRO - SALGUEIRO	20,0	UASB + POLIMENTO	-8,083179	-39,123934	10,208333333	0,01
PE_ETE046	AMBOS	2604106	CARUARU	ETE CARUARU II	ETE CARUARU II - CARUARU	18,1	PRELIMINAR/ PRIMÁRIO	-8,29580599	-35,931022	10	0,00
PE_ETE047	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE VILA RICA	ETE VILA RICA - JABOATÃO DOS GUARARAPES	16,5	LAGOAS	-8,120267	-35,028056	4577,67708333	4,70
PE_ETE048	ANA	2603454	CAMARAGIBE	ETE CAMARAGIBE	ETE CAMARAGIBE - CAMARAGIBE	16,3	OUTROS	-8,027125	-34,93171	73148,6284722	9,14
PE_ETE049	AMBOS	2611101	PETROLINA	ETE JARDIM PETRÓPOLIS	ETE JARDIM PETRÓPOLIS - PETROLINA	15,0	LAGOAS	-9,390664	-40,55495	723,72387113	1,58
PE_ETE050	AMBOS	2614857	TAMANDARÉ	ETE TAMANDARÉ	ETE TAMANDARÉ - TAMANDARÉ	14,0	LAGOAS	-8,74578056	-35,10873333	00	0,00
PE_ETE051	COMPESA	2609402	MORENO	ETE BONANÇA	ETE BONANÇA - MORENO	13,3	UASB + POLIMENTO	-8,108944	-35,200932	72,905092591	0,22
PE_ETE052	ANA	2607307	IPUBI	ETE IPUBI	ETE IPUBI - IPUBI	13,0	LAGOAS	-7,664622	-40,139639	00	0,00
PE_ETE053	ANA	2607901	JABOATÃO DOS GUARARAPES	ETE CAJUEIRO SECO - OLHO D'ÁGUA	ETE CAJUEIRO SECO - OLHO D'ÁGUA - JABOATÃO DOS GUARARAPES	12,5	UASB + POLIMENTO	-8,176126	-34,936752	5433,79976851	2,70

ID	FONTE	CÓDIGO	MUNICÍPIO	NOME ETE	NOME ETE + MUNICÍPIO	QR (L/S)	PROCESSO	LAT	LON	N° DE OUTORGASQOUT (L/S)	QOUT/QR
PE_ETE054	ANA	2611606	RECIFE	ETES - 11 (LAGOA ENCANTADA)	ETES - 11 (LAGOA ENCANTADA) - RECIFE	12,3	LAGOAS	-8,127342	-34,949907	8096,90162036	7,85
PE_ETE055	ANA	2603454	CAMARAGIBE	ETES - 12 (VALE DAS PEDREIRAS)	ETES - 12 (VALE DAS PEDREIRAS) - CAMARAGIBE	10,3	UASB	-8,00705	-34,967122	63124,6122685	12,11
PE_ETE056	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE PRAIA GRANDE	ETE PRAIA GRANDE - JABOATÃO DOS GUARARAPES	9,4	UASB + POLIMENTO	-8,200678	-34,935572	5126,39236111	2,80
PE_ETE057	ANA	2611606	RECIFE	ETE FELIPE CAMARÃO	ETE FELIPE CAMARÃO - RECIFE	9,3	LAGOAS	-8,081797	-34,951081	7691,29976851	9,87
PE_ETE058	AMBOS	2611606	RECIFE	ETE RUA DO RIO / BEIRINHA	ETE RUA DO RIO / BEIRINHA - RECIFE	9,1	UASB	-8,092014	-34,923536	7891,92476851	10,11
PE_ETE059	ANA	2607901	JABOATÃO DOS GUARARAPES	ETE CURADO I	ETE CURADO I - JABOATÃO DOS GUARARAPES	8,7	LAGOAS	-8,081617	-34,986139	6687,27199073	10,03
PE_ETE061	AMBOS	2601201	ARCOVERDE	ETE ARCOVERDE I	ETE ARCOVERDE I - ARCOVERDE	8,0	LAGOAS	-8,403433	-37,080996	00	0,00
PE_ETE060	AMBOS	2601201	ARCOVERDE	ETE ARCOVERDE II	ETE ARCOVERDE II - ARCOVERDE	8,0	LAGOAS	-8,403433	-37,080996	00	0,00
PE_ETE062	ANA	2611606	RECIFE	ETE CANAÃ / BELA VISTA	ETE CANAÃ / BELA VISTA - RECIFE	7,8	UASB	-7,992044	-34,927969	80159,53125	20,45
PE_ETE063	AMBOS	2611101	PETROLINA	ETE VILA MARCELA	ETE VILA MARCELA - PETROLINA	7,0	LAGOAS	-9,356669	-40,473978	819,65601218	2,81
PE_ETE064	ANA	2611606	RECIFE	ETE VILA DOS MILAGRES	ETE VILA DOS MILAGRES - RECIFE	6,4	UASB	-8,116775	-34,944384	8196,92476851	15,19
PE_ETE065	COMPESA	2611606	RECIFE	ETE EES 22	ETE EES 22 - RECIFE	6,4	OUTROS	-8,131958	-34,946664	8298,38310184	15,44
PE_ETE066	AMBOS	2611606	RECIFE	ETE JARDIM PLANALTO (VINÍCIUS DE MORAES)	ETE JARDIM PLANALTO (VINÍCIUS DE MORAES) - RECIFE	6,3	PRELIMINAR/ PRIMÁRIO	-8,084664	-34,959461	7492,27199073	14,65
PE_ETE067	AMBOS	2613701	SÃO LOURENÇO DA MATA	ETE ARENA PERNAMBUCO	ETE ARENA PERNAMBUCO - SÃO LOURENÇO DA MATA	5,6	UASB + POLIMENTO	-8,003383	-35,041553	3064,07407407	11,52
PE_ETE068	AMBOS	2611606	RECIFE	ETE JARDIM UCHOA	ETE JARDIM UCHOA - RECIFE	4,9	FOSSA + FILTRO ANAERÓBIO	-8,102481	-34,936375	7994,23958332	19,08
PE_ETE069	ANA	2611606	RECIFE	ETE BURITI 01	ETE BURITI 01 - RECIFE	4,8	FOSSA + FILTRO ANAERÓBIO	-8,010922	-34,930242	89169,3923611	35,14
PE_ETE070	AMBOS	2607901	JABOATÃO DOS GUARARAPES	ETE MULTIFABRIL	ETE MULTIFABRIL - JABOATÃO DOS GUARARAPES	4,8	LAGOAS	-8,106789	-35,026719	3973,66087963	15,38
PE_ETE071	ANA	2611606	RECIFE	ETE PLANETA DOS MACACOS	ETE PLANETA DOS MACACOS - RECIFE	4,4	UASB	-8,077131	-34,940336	7388,71874999	19,98
PE_ETE072	AMBOS	2611606	RECIFE	ETE CAFESÓPOLIS	ETE CAFESÓPOLIS - RECIFE	4,4	FOSSA + FILTRO ANAERÓBIO	-8,099189	-34,907956	7384,95717592	19,44
PE_ETE073	AMBOS	2605459	FERNANDO DE NORONHA	ETE FERNANDO DE NORONHA (CACHORRO)	ETE FERNANDO DE NORONHA (CACHORRO) - FERNANDO DE NORONHA	4,3	UASB + POLIMENTO	-3,840154	-32,40801	00	0,00
PE_ETE074	AMBOS	2611606	RECIFE	ETE VILA BURITI (A. CARNEIRO)	ETE VILA BURITI (A. CARNEIRO) - RECIFE	4,3	FOSSA + FILTRO ANAERÓBIO	-8,012392	-34,928539	90171,0127315	39,68

ID	FONTE	CÓDIGO	MUNICÍPIO	NOME ETE	NOME ETE + MUNICÍPIO	QR (L/S)	PROCESSO	LAT	LON	N° DE OUTORGASQOUT (L/S)	QOUT/QR
PE_ETE075	ANA	2609600	OLINDA	ETE PASSARINHO I E II	ETE PASSARINHO I E II - OLINDA	4,0	FOSSA + FILTRO ANAERÓBIO	-7,981111	-34,918508	65111,0011574	28,10
PE_ETE076	ANA	2611606	RECIFE	ETE JARDIM SÃO PAULO	ETE JARDIM SÃO PAULO - RECIFE	3,7	UASB	-8,079556	-34,940617	7489,41319444	24,17
PE_ETE077	ANA	2609402	MORENO	ETE - 04	ETE - 04 - MORENO	3,5	UASB + POLIMENTO	-8,120819	-35,0979	77,083333333	2,01
PE_ETE078	AMBOS	2609402	MORENO	ETE MORENO 1	ETE MORENO 1 - MORENO	3,5	PRELIMINAR/ PRIMÁRIO	-8,12479	-35,080719	87,15625	2,03
PE_ETE079	ANA	2611606	RECIFE	ETE VILA ARRAES	ETE VILA ARRAES - RECIFE	3,4	UASB	-8,045656	-34,962164	56102,5405093	30,52
PE_ETE080	AMBOS	2611606	RECIFE	ETE VILA BURITI (PLATÔ)	ETE VILA BURITI (PLATÔ) - RECIFE	3,2	FOSSA + FILTRO ANAERÓBIO	-8,010208	-34,927669	89169,3923611	53,61
PE_ETE081	AMBOS	2606804	IGARASSU	ETE IGARASSU	ETE IGARASSU - IGARASSU	3,1	LAGOAS	-7,839604	-34,9113	63426,3541666	137,53
PE_ETE082	ANA	2600054	ABREU E LIMA	ETE MATINHA	ETE MATINHA - ABREU E LIMA	2,6	UASB	-7,899169	-34,904469	65150,0289352	58,83
PE_ETE083	AMBOS	2611606	RECIFE	ETE VILA BURITI (VOVÔ)	ETE VILA BURITI (VOVÔ) - RECIFE	2,5	FOSSA + FILTRO ANAERÓBIO	-8,008711	-34,926858	89169,3923611	69,14
PE_ETE084	ANA	2609600	OLINDA	ETE VILA ESPERANÇA I E II	ETE VILA ESPERANÇA I E II - OLINDA	2,4	FOSSA + FILTRO ANAERÓBIO	-7,993847	-34,909162	66111,2094907	45,95
PE_ETE085	AMBOS	2611606	RECIFE	ETE ABENÇOADA POR DEUS	ETE ABENÇOADA POR DEUS - RECIFE	2,4	UASB + POLIMENTO	-8,036667	-34,93	64114,068287	48,13
PE_ETE086	ANA	2611606	RECIFE	ETE CAXANGÁ III	ETE CAXANGÁ III - RECIFE	2,2	UASB	-8,051144	-34,956911	5881,0011574	36,49
PE_ETE087	AMBOS	2611606	RECIFE	ETE APIPUCOS	ETE APIPUCOS - RECIFE	2,1	FOSSA + FILTRO ANAERÓBIO	-8,021578	-34,933783	76152,7372685	73,43
PE_ETE088	ANA	2609402	MORENO	ETE - 05	ETE - 05 - MORENO	1,8	UASB + POLIMENTO	-8,115527	-35,081178	87,15625	4,02
PE_ETE089	COMPESA	2609402	MORENO	ETE MORENO 2	ETE MORENO 2 - MORENO	1,8	PRELIMINAR/ PRIMÁRIO	-8,115392	-35,081234	87,15625	4,04
PE_ETE090	ANA	2606408	GRAVATÁ	ETE VILA COHAB	ETE VILA COHAB - GRAVATÁ	1,4	OUTROS	-8,219474	-35,551586	00	0,00
PE_ETE091	ANA	2606200	GOIANA	ETE GOIANA	ETE GOIANA - GOIANA	1,0	LAGOAS	-7,572881	-34,984131	1772,05416666	71,34
PE_ETE092	AMBOS	2611606	RECIFE	ETE UR-7-VÁRZEA	ETE UR-7-VÁRZEA - RECIFE	0,9	UASB	-8,03852	-34,978135	4799,79745371	106,17
PE_ETE093	AMBOS	2611606	RECIFE	ETE VILA CARDEAL E SILVA	ETE VILA CARDEAL E SILVA - RECIFE	0,9	UASB + POLIMENTO	-8,096372	-34,931028	8093,8460648	99,84
PE_ETE094	AMBOS	2611606	RECIFE	ETE VILA FELICIDADE	ETE VILA FELICIDADE - RECIFE	0,9	UASB	-8,022894	-34,957375	64112,1122685	120,55
PE_ETE096	ANA	2611606	RECIFE	ETE - CEL FABRICIANO	ETE - CEL FABRICIANO - RECIFE	0,7	UASB + POLIMENTO	-8,121194	-34,912514	7589,64467592	121,14
PE_ETE095	COMPESA	2611606	RECIFE	ETE CORONEL FABRICIANO	ETE CORONEL FABRICIANO - RECIFE	0,7	FOSSA + FILTRO ANAERÓBIO	-8,122522	-34,913426	7589,64467592	121,14
PE_ETE097	ANA	2614303	MOREILÂNDIA	ETE MOREILÂNDIA	ETE MOREILÂNDIA - MOREILÂNDIA	0,4	LAGOAS	-7,637722	-39,551373	00	0,00
PE_ETE117	ANA	2601607	BELÉM DO SÃO FRANCISCO	ETE BELÉM DE SÃO FRANCISCO	ETE BELÉM DE SÃO FRANCISCO - BELÉM DO SÃO FRANCISCO	0,0	LAGOAS	-8,762611	-38,960182	00	-

ID			MUNICÍPIO	NOME ETE	NOME ETE + MUNICÍPIO	QR (L/S)	PROCESSO	LAT		N° DE OUTORGASQOUT (L/S)	QOUT/QR
PE_ETE112	ANA	2602001	BODOCÓ	ETE BODOCÓ	ETE BODOCÓ - BODOCÓ	0,0	LAGOAS	-7,788177	-39,943412	00	-
PE_ETE115	ANA	2602803	BUÍQUE	ETE BUÍQUE	ETE BUÍQUE - BUÍQUE	0,0	LAGOAS	-8,610071	-37,157317	00	-
PE_ETE114	ANA	2603009	CABROBÓ	ETE CABROBÓ	ETE CABROBÓ - CABROBÓ	0,0	LAGOAS	-8,516737	-39,296578	11,917808219	-
PE_ETE113	ANA	2603405	CALUMBI	ETE CALUMBI	ETE CALUMBI - CALUMBI	0,0	OUTROS	-7,941654	-38,148239	00	-
PE_ETE110	ANA	2604304	CEDRO	ETE CEDRO	ETE CEDRO - CEDRO	0,0	LAGOAS	-7,720273	-39,232343	00	-
PE_ETE111	ANA	2606309	GRANITO	ETE GRANITO	ETE GRANITO - GRANITO	0,0	LAGOAS	-7,720423	-39,618245	00	-
PE_ETE116	ANA	2606606	IBIMIRIM	ETE IBIMIRIM	ETE IBIMIRIM - IBIMIRIM	0,0	OUTROS	-8,62460333	-37,65964889	00	-
PE_ETE117	ANA	2601607	BELÉM DO SÃO FRANCISCO	ETE BELÉM DE SÃO FRANCISCO	ETE BELÉM DE SÃO FRANCISCO - BELÉM DO SÃO FRANCISCO	0,0	LAGOAS	-8,762611	-38,960182	00	

CNI

Paulo Afonso Ferreira Presidente em exercício

Diretoria de Relações Institucionais - DRI

Mônica Messenberg Guimarães Diretora de Relações Institucionais

Gerência Executiva de Meio Ambiente e Sustentabilidade - GEMAS

Davi Bomtempo

Gerente-Executivo de Meio Ambiente e Sustentabilidade

José Quadrelli Neto Percy Soares Baptista Neto Equipe Técnica

Superintendência de Relações Públicas

Ana Maria Curado Matta Superintendente de Relações Públicas

Andre Augusto de Oliveira Dias Produção Editorial

Diretoria de Serviços Corporativos - DSC

Fernando Augusto Trivellato Diretor de Serviços Corporativos

Área de Administração, Documentação e Informação – ADINF

Maurício Vasconcelos de Carvalho Gerente Executivo de Administração, Documentação e Informação

Alberto Nemoto Yamaguti Normalização

FEDERAÇÃO DAS INDÚSTRIAS DO ESTADO DO RIO GRANDE DO NORTE - FIERN

Amaro Sales de Araújo Presidente

Comissão Temática de Meio Ambiente da FIERN

Roberto Pinto Serquiz Elias Presidente

Bhaskara Canan Rilke dos Santos Silva

CENTRO INTERNACIONAL DE REFERÊNCIA EM REÚSO DE ÁGUA - CIRRA

Ivanildo Hespanhol Diretor Presidente

Bruno Nogueira Fukasawa Lineu Andrade de Almeida Luana Di Beo Rodrigues Ivanildo Hespanhol Virgínia Dias de Azevedo Sodre Autores

Danúzia Queiroz Revisão gramatical

Editorar Multimídia Projeto Gráfico e Diagramação

