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Main thesis

Global economic and population growth is
creating new tensions in the supply of energy
and raw materials leading to serious
environmental issues

Navigating through the inevitable changes is a
profound challenge and responsibility of
politicians, scientists and businessmen
Technology is a powerful force, but attitude
adjustments will also be necessary
Bioprocesses are the key technology of a future
sustainable bioeconomy
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Messages of this talk

1. Drivers of bio-economy

2. Technologies of change: Metabolic
Engineering and Synthetic Biology

3. Can biotechnology compete with
chemistry

4. Examples

5. Necessary (but not sufficient)

ingredients of a successful ecosystem
6. Role of Brazil
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Forces of change
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What has changed drastically during
the past 15-20 years?

e Continuous increase of the cost of fuels and
raw materials
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What has changed drastically during
the past 15-20 years?

Continuous increase of the cost of fuels and
raw materials

Strategic challenges in securing the required
amounts of fuels and raw materials
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What has changed drastically during
the past 15-20 years?

Continuous increase of the cost of fuels and
raw materials

Strategic challenges in securing the required
amounts of fuels and raw materials

Grave conseguences for climate change
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CO2 emissions

Figure 2: Glohal CO2 Emissions from Fossil Fuel Burning,
Cement Manufacture, and Gas Flaring: 1751-2002
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Atmospheric Carbon Dioxide
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Global temperature change

Global Land-Ocean Temperature Anomaly (°C) 2008 Surface Temperature Anomaly (“C)
Base Period = 1951-1980 Global Mean = 0.44
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After hurricane Sandy...

Wil
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Sustainability: Not much of a choice...

Must begin transitioning to a
sustainable bio-based economy

« Good use of resources and energy.
Energy cost must reflect all costs of a
sustainable system

 Rational land use

« Development and acceptance of new
technologies
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What has changed drastically during
the past 15-20 years?

Continuous increase of the cost of fuels and
raw materials

Strategic challenges in securing the required
amounts of fuels and raw materials

Serious concerns about climate change

Development of Biotechnology and Metabolic
Engineering: Core technologies for converting
renewable resources to fuels and chemicals
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Biotechnology and
Metabolic Engineering:
Enabling technologies of
a bio-based economy
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Metabolic Engineering
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Cells:

Little chemical

factories with

thousands of
chemical compounds

Interconverted
through thousands of

chemical reactions

Main substrate:
Sugars

Products: Virtually
Infinite
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Engineering microbes to produce any

product
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Metabolic Engineering as a new
Organic Chemistry

Metabolic Engineering: Making improved
biocatalysts capable of:

" Enhanced production of a native product
to a microorganism

" Formation of a product that is new to the
microorganism

" Synthesizing novel products

III' == Bjoinformatics and Metabolic 31d Bioeconomy Forum
il Engineering Laboratory G. Stephanopoulos Sao Paulo, October 23, 2014



How does Metabolic Engineering differ
from Genetic Engineering?

... Metabolic engineering differs from Genetic
Engineering and related molecular biological
sciences in that it concerns itself with the
properties of the entire metabolic network as
opposed to individual genes and enzymes.

"Metabolic Engineering: Issues and Methodologies," Trends in Biotechnology, Vol. 11, pp.
392-396 (1993)
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Isoprene production for tires
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Microorganisms
They are found
everywhere, from the
human gut to the hot
springs of Yellowstone
Park
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Engineering microbes for any
conversion at very high selectivity

Biotechnology beyond biofuels
 Propylene
 Acrylic, adipic, lactic acids
 Terephthalic acid (PET)
e Succinic acid, BDO, PDO
 |soprene
 Biopolymers (PLA, PHB,...)
 Fats, fatty alcohols, detergents
 Polysaccharides, gums
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The biotechnology revolution, and the
chemical-fuels industry (White Biotech)

e Fuels and chemicals were the initial biotech target
= Cetus (Chiron), Genex, Biogen, Genentech
e More challenging technical problem than insulin
= Switch of emphasis to medical applications
o Changing boundary conditions
" Emphasis on renewable resources
= Robust US federal funding = Applied mol. biology
= Genomics

= Systems Biology: a new mindframe in biological research
= Metabolic Engineering

e EXploit applications of biology beyond medicine
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Creative destruction:
Replace depreciated low-cost

chemical plants with modern
high-biotech processes
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Creative destruction:
Replace depreciated low-cost

chemical plants with modern
high-biotech processes

Why?
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1. Selectivity of bioprocesses
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1. Selectivity of bioprocesses

2. Simple, single-product, low capex
plants

3. Product cost is dominated by
feedstock cost (greater than S55%)
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1. Selectivity of bioprocesses

2. Simple, single-product, low capex
plants

3. Product cost is dominated by
feedstock cost (greater than S55%)

4. Aqueous systems (dilute)
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. Selectivity of bioprocesses

2. Simple, single-product, low capex
plants

3. Product cost is dominated by
feedstock cost (greater than S55%)
4. Aqueous systems (dilute)

5. Sugar substrates
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1. Selectivity of bioprocesses
2. Simple, single-product, low capex
plants

3. Product cost is dominated by
feedstock cost (greater than S55%)

. Aqueous systems (dilute)

. Sugar substrates

. Sensitivity of catalysts
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. Selectivity of bioprocesses
. Simple, single-product, low capex

plants

. Product cost is dominated by

feedstock cost (greater than S55%)

. Aqueous systems (dilute)

. Sugar substrates

. Sensitivity of catalysts

. High temperatures, P avoided
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Illustrative examples from
MIT lab
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Example 1:

Ethylene glycol
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MEG from Xylose: C2
Fermentation Pathway

C5sugar —— C2 inter + C3 intermediate
C2 intermediate — MEG

C3 intermediate — MEG + CO,

Glucose:
Six carbon sugar derived from multiple sources including corn, cane
sugar, biomass

Glucose conversion to MEG

pV4

l-\? Césugar —— = 2 C3 intermediate

(a4 C3intermediate —— MEG + CO,

<
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EG from the C2 pathway

D-xylose D-arabinose
A A
xylA fucl
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yield = 0.41 g-EG/g-xylose
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EG from the C3 pathway
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‘ Xylose Fermentation Data
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C5 pathway:

* Fermentation
Organism: E. Coli

= Yield: 0.40 kg MEG/kg
xylose

= Titer: 40 g MEG /liter

= Carbon Source:
Xylose

Conclusions:

= A proven pathway to
MEG from sugar
today

» Industrially relevant
rates, yields and titers

= Technology patented
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Example 2:

Carbohydrates to lipids for
biodiesel production
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Lipid biosynthesis pathway: role of ACL
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Optimization of AD9 fermentation 3: Lipid

Biomass & lipid production of
AD9 in 1.6-liter bioreactor
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production
Maximum lipid
Lipid titer production during
(g/l) 56.1 lipid formation phase
Dry cell Lipid
weight (g/l) 83.2 prod’n 41-78 h
Lipid phase
content 66.2%
consumed Consumed
Glu (g/l) 236.2 Glu (g/l) 130.85
Yield (g/g) 0.24 Yield (g/g)  0.2664
. Productivi
Productivity ty (a/l/h) 0.942
(g/l/h) 0.707
Time (h) 78
80

Patent pending
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Example 3:

Gases to lipids for biodiesel
production
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A two-stage system for converting
syn gas to lipids

Product of CO, fixation
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Strateqgy: Fix CO, and H, by
acetogenic bacteria and feed
acetate so produced to
Oleaginous microbe
Challenges: Achieve high rates
of growth of acetogenic bacteria,
and acetate production
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Lipid and non-lipid time courses

Lipid, non-lipid (g/L)
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Example 4:

Isoprenoids
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1.6 Modulating the upstream and downstream
pathway for amplifying taxadiene production
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Fermentation of taxadiene producing strain
AP2T7TG

2000 60
~#-Taxadiene (mg/L)
0D 600nm L
1600 - S0
% L 40
2 1200 - g
® | a4
.E 30 §
S 800 o
x L 20
=
400 4
0 T T T T 0
0 40 80 120 160
Time (h)

Science, 330: 70-74 (2010)
e Taxadiene production: —1,700 mg/L
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Example S:

Engineering Escherichia coli to
overproduce tyrosine directly
from glucose
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Aromatic amino acid biosynthetic pathway

E4P + PEP
& aroF ¢ aroG,H Rational Design Approaches

DAHP

1. Eliminate main competing reactions (pheA deletion)

2. Overexpress enzymes constituting major bottlenecks
(arogG, tyrA)

<+ ¢«

Shikimate

3. Eliminate feedback repression of enzymes (aroG™", tyrA™")

4. Eliminate negative transcriptional regulator (TyrR
deletion)

<+ ¢« <

T ——— I ———r—r—r————

Chorismate |9 5 —p—p P L-Trp
¢ pheA
Prephenate \ — > > L-Phe
" TyrR
tyr.
1 > 4 ¢
i 4-HPP
| —
P B
S  L-Tyr AAA genes
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1.5-1 Fermentations in MOPS and R media

e __ 12
2 3 Media Formulation MOPS MOPS R
-G L
GE) E Fermentation scale 50 ml 1.5-| 1.5
C_Es = L-tyrosine 902 mg/l 5.71g/l 13.8g/l
= 8
E S Glucose consumed (g) 5g 28 115
)
g E Yield (g Tyr/g Glc) 0.180 0.204 0.120
a
C§) o Maximum Productivity - 92.6 188
(mg Tyr/g DCW/hr)
Maximum Productivity - 0.280 2.06
o 6 (g Tyr/L/hr)
L 14 @ Growth rate (hr™) 0.296 0.275 0.405
r12 § = Maximum ODgoo 3.72 10.4 48.1
S T o
= f10 =g
o
s T8 Trade-off between yields and maximum
o g 0o
L4 T & N .
8 productivities/titers
L2 2
400 { ODggp O L-tyrosine A L-phenylalanine

Time (hr)
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Example 6:

Muconic (and adipic) acid
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Necessary (but not sufficient) ingredients of a
successful biotech ecosystem -
the MIT experience
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Necessary (but not sufficient) ingredients of a
successful biotech ecosystem -
the MIT experience

e First-class academic institution
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MIT

Private University, founded in 1861
Endowment ~$10B (450M (1985))

Tuition: $42,050 + $12,000 (room & board)
Research budget: ~$750M/yr ('12)

Revenue of Technology Licensing Office from
Stock cash out, royalties, fees: ~$80/year
(2012)

Rate of return: 10.7%




MIT

 If you counted the number of companies
founded by MIT faculty and Alumni the past 25
years you would have:
o ~25,000 etaipiec, employing,
« ~1,600,000 employees, generating
« ~$1.5T in goods and services
(equivalent to a G20 country)




Necessary (but not sufficient) ingredients of a
successful biotech ecosystem -
the MIT experience

e First-class academic institution
e Healthy academia-industry relationship
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Necessary (but not sufficient) ingredients of a
successful biotech ecosystem -
the MIT experience

e First-class academic institution
e Healthy academia-industry relationship
e Strong protection of IP
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Necessary (but not sufficient) ingredients of a
successful biotech ecosystem -
the MIT experience

e First-class academic institution
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e Strong protection of IP

e Sensible regulation-GMO-Pre-1979
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Necessary (but not sufficient) ingredients of a
successful biotech ecosystem -
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¢ Human capital-tolerant environment
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Necessary (but not sufficient) ingredients of a
successful biotech ecosystem -
the MIT experience

e First-class academic institution

e Healthy academia-industry relationship

e Strong protection of IP

e Sensible regulation-GMO-Pre-1979

¢ Human capital-tolerant environment

e Tradition of technology

¢ Reward innovation

e High risk capital-competitive tax treatment
e Legal-financial infrastructure

e Government support (remove obstacles)
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Biofuels and chemicals are first
and foremost a feedstock story

e Key competitive advantages
<« Land availability

< Plentiful water
<« Sunlight and highly productive land
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Industrial Biotech and Brazil

e A natural
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technologies of the 215t century

e Brazil experimenting with globalization:
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e Present negative outlook: An opportunity to
move in and make up for lost ground!

e Biotech and overall economy: can contribute
5-10% of GDP, lift rural development,
substitute imports
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Industrial Biotech and Brazil

e A natural

e Biotech and Metabolic Engineering:
technologies of the 215t century

e Brazil experimenting with globalization:
Biotech is the safest place to start

e Present negative outlook: An opportunity to
move in and make up for lost ground!

e Biotech and overall economy: can contribute
5-10% of GDP, lift rural development,
substitute imports

e Very promising technology:
unlimited products
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What is in the future?
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Future applications drivers

e Sustained interest in utilization of renewable
resources

<+ Pressure on commodities will continue

<« Climate change concerns will persist

<+ Blotechnology Is better than chemistry In
utilizing carbohydrates
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Expected supply curves for biomass
http://wwwl.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf
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Expected supply curves for biomass
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Need a sustainable bio-economy
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Can land-based renewables
replace sustainably fossil fuels?

* Yes for the production of chemicals

* Fuel production must involve
lignocellulosics, MSW or gases

III' == Bjoinformatics and Metabolic 31d Bioeconomy Forum
il Engineering Laboratory G. Stephanopoulc Sao Paulo, October 23, 2014




Global Biotech business

Food
Medical
Agricultural
Marine
Industrial
TOTAL

== Bioinformatics and Metabolic
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2015
100
225

25
20

2010
$80B
125

15

10

80 180
$310B $550B

Sources: Frost & Sullivan, BCC Research
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