3rd Bioeconomy Forum:

Policies and the Environment for Innovation and Business in Brazil

Sao Paulo, SP, Brazil

23 October, 2014

The impact of metabolic engineering and synthetic biology: paradigm shift on the 21st century business, Or,

Developing the bioprocesses of a sustainable bioeconomy using Biotechnology and Metabolic Engineering

Gregory Stephanopoulos MIT

Main thesis

- Global economic and population growth is creating new tensions in the supply of energy and raw materials leading to serious environmental issues
- Navigating through the inevitable changes is a profound challenge and responsibility of politicians, scientists and businessmen
- Technology is a powerful force, but attitude adjustments will also be necessary
- Bioprocesses are the key technology of a future sustainable bioeconomy

Messages of this talk

- 1. Drivers of bio-economy
- 2. Technologies of change: Metabolic Engineering and Synthetic Biology
- Can biotechnology compete with chemistry
- 4. Examples
- 5. Necessary (but *not* sufficient) ingredients of a successful ecosystem
- 6. Role of Brazil

Forces of change

What has changed drastically during the past 15-20 years?

Continuous increase of the cost of fuels and raw materials

Oil supply and cost curve

Source: IEA (2005)

What has changed drastically during the past 15-20 years?

- Continuous increase of the cost of fuels and raw materials
- Strategic challenges in securing the required amounts of fuels and raw materials

What has changed drastically during the past 15-20 years?

- Continuous increase of the cost of fuels and raw materials
- Strategic challenges in securing the required amounts of fuels and raw materials
- Grave consequences for climate change

CO₂ emissions

Atmospheric Carbon Dioxide

Global temperature change

After hurricane Sandy...

Sustainability: Not much of a choice...

Must begin transitioning to a sustainable bio-based economy

- Good use of resources and energy.
 Energy cost must reflect all costs of a sustainable system
- Rational land use
- Development and acceptance of new technologies

What has changed drastically during the past 15-20 years?

- Continuous increase of the cost of fuels and raw materials
- Strategic challenges in securing the required amounts of fuels and raw materials
- Serious concerns about climate change
- Development of Biotechnology and Metabolic Engineering: Core technologies for converting renewable resources to fuels and chemicals

Biotechnology and Metabolic Engineering: Enabling technologies of a bio-based economy

Metabolic Engineering

Cells:

Little chemical factories with thousands of chemical compounds interconverted through thousands of chemical reactions

Main substrate: Sugars

Products: Virtually infinite

Engineering microbes to produce any product

Metabolic Engineering as a new Organic Chemistry

Metabolic Engineering: Making improved biocatalysts capable of:

- Enhanced production of a native product to a microorganism
- Formation of a product that is new to the microorganism
- Synthesizing novel products

How does Metabolic Engineering differ from Genetic Engineering?

... Metabolic engineering differs from Genetic Engineering and related molecular biological sciences in that it concerns itself with the properties of the *entire metabolic network* as opposed to individual genes and enzymes.

"Metabolic Engineering: Issues and Methodologies," *Trends in Biotechnology,* Vol. 11, pp. 392-396 (1993)

Παραγωγή βιο-αποικοδομήσιμων πολυμερών

Isoprene production for tires

Microorganisms
They are found
everywhere, from the
human gut to the hot
springs of Yellowstone
Park

Engineering microbes for *any* conversion at very high *selectivity* Biotechnology beyond biofuels

- Propylene
- Acrylic, adipic, lactic acids
- Terephthalic acid (PET)
- Succinic acid, BDO, PDO
- Isoprene
- Biopolymers (PLA, PHB,...)
- Fats, fatty alcohols, detergents
- Polysaccharides, gums

The biotechnology revolution, and the chemical-fuels industry (White Biotech)

- Fuels and chemicals were the initial biotech target
 - Cetus (Chiron), Genex, Biogen, Genentech
- More challenging technical problem than insulin
 - Switch of emphasis to medical applications
- Changing boundary conditions
 - Emphasis on renewable resources
 - Robust US federal funding ⇒ Applied mol. biology
 - Genomics
 - Systems Biology: a new mindframe in biological research
 - Metabolic Engineering
- Exploit applications of biology beyond medicine

Creative destruction:

Replace depreciated low-cost chemical plants with modern high-biotech processes

Creative destruction:

Replace depreciated low-cost chemical plants with modern high-biotech processes

Why?

1. Selectivity of bioprocesses

- 1. Selectivity of bioprocesses
- 2. Simple, single-product, low capex plants
- 3. Product cost is dominated by feedstock cost (greater than 55%)

- 1. Selectivity of bioprocesses
- 2. Simple, single-product, low capex plants
- 3. Product cost is dominated by feedstock cost (greater than 55%)
- 4. Aqueous systems (dilute)

- 1. Selectivity of bioprocesses
- 2. Simple, single-product, low capex plants
- 3. Product cost is dominated by feedstock cost (greater than 55%)
- 4. Aqueous systems (dilute)
- 5. Sugar substrates

- 1. Selectivity of bioprocesses
- 2. Simple, single-product, low capex plants
- 3. Product cost is dominated by feedstock cost (greater than 55%)
- 4. Aqueous systems (dilute)
- 5. Sugar substrates
- 6. Sensitivity of catalysts

- 1. Selectivity of bioprocesses
- 2. Simple, single-product, low capex plants
- 3. Product cost is dominated by feedstock cost (greater than 55%)
- 4. Aqueous systems (dilute)
- 5. Sugar substrates
- 6. Sensitivity of catalysts
- 7. High temperatures, P avoided

Illustrative examples from MIT lab

Example 1:

Ethylene glycol

MEG from Xylose: C2 Fermentation Pathway

C5 sugar --- C2 inter + C3 intermediate

C2 intermediate --> MEG

C3 intermediate \longrightarrow MEG + CO₂

Glucose:

Six carbon sugar derived from multiple sources including corn, cane sugar, biomass

Glucose conversion to MEG

C6 sugar ----

2 C3 intermediate

C3 intermediate ----

 $MEG + CO_2$

EG from the C2 pathway

EG from the C3 pathway

yield = 0.41 g-EG/g-xylose = 0.69 g-EG/g-glucose

Xylose Fermentation Data

C5 pathway:

- FermentationOrganism: E. Coli
- Yield: 0.40 kg MEG/kg xylose
- Titer: 40 g MEG /liter
- Carbon Source: Xylose

Conclusions:

- A proven pathway to MEG from sugar today
- Industrially relevant rates, yields and titers
- Technology patented

Example 2:

Carbohydrates to lipids for biodiesel production

Lipid biosynthesis pathway: role of ACL

Paulo, October 23, 2014

Optimization of AD9 fermentation 3: Lipid production

Biomass & lipid production of AD9 in 1.6-liter bioreactor

			um lipid
Lipid titer (g/l)	56.1	production during lipid formation phase	
Dry cell weight (g/l)	83.2	Lipid prod'n	41-78 h
Lipid content	66.2%	phase	
consumed Glu (g/l)	236.2	Consumed Glu (g/l)	130.85
Yield (g/g)	0.24	Yield (g/g)	0.2664
Productivity (g/l/h)	0.707	Productivi ty (g/l/h)	0.942

Patent pending

78

Example 3:

Gases to lipids for biodiesel production

A two-stage system for converting syn gas to lipids

Goal: Produce an infrastructure compatible fuel (biodiesel) from CO₂ and H₂ Asset: Oleaginous microbe with extremely high yields, productivities, and titers Strategy: Fix CO₂ and H₂ by acetogenic bacteria and feed acetate so produced to Oleaginous microbe **Challenges:** Achieve high rates of growth of acetogenic bacteria,

and acetate production

Lipid and non-lipid time courses

Example 4:

Isoprenoids

II.6 Modulating the upstream and downstream pathway for amplifying taxadiene production

Fermentation of taxadiene producing strain AP2T7TG

Taxadiene production: ~1,700 mg/L

Example 5:

Engineering Escherichia coli to overproduce tyrosine directly from glucose

Aromatic amino acid biosynthetic pathway

1.5-l Fermentations in MOPS and R media

Media Formulation	MOPS	MOPS	R
Fermentation scale	50 ml	1.5-l	1.5-l
L-tyrosine	902 mg/l	5.71 g/l	13.8 g/l
Glucose consumed (g)	5 g	28	115
Yield (g Tyr/g Glc)	0.180	0.204	0.120
Maximum Productivity (mg Tyr/g DCW/hr)	-	92.6	188
Maximum Productivity (g Tyr/L/hr)	-	0.280	2.06
Growth rate (hr ⁻¹)	0.296	0.275	0.405
Maximum OD ₆₀₀	3.72	10.4	48.1

Trade-off between yields and maximum productivities/titers

R medium

Engineering Laboratory

Example 6:

Muconic (and adipic) acid

First-class academic institution

MIT

- Private University, founded in 1861
- Endowment ~\$10B (450M (1985))
- Tuition: \$42,050 + \$12,000 (room & board)
- Research budget: ~\$750M/yr ('12)
- Revenue of Technology Licensing Office from Stock cash out, royalties, fees: ~\$80/year (2012)
- Rate of return: 10.7%

MIT

- If you counted the number of companies founded by MIT faculty and Alumni the past 25 years you would have:
 - ~25,000 εταιρίες, employing,
 - ~1,600,000 employees, generating
 - ~\$1.5T in goods and services (equivalent to a G20 country)

- First-class academic institution
- Healthy academia-industry relationship

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP
- Sensible regulation-GMO-Pre-1979

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP
- Sensible regulation-GMO-Pre-1979
- Human capital-tolerant environment

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP
- Sensible regulation-GMO-Pre-1979
- Human capital-tolerant environment
- Tradition of technology

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP
- Sensible regulation-GMO-Pre-1979
- Human capital-tolerant environment
- Tradition of technology
- Reward innovation

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP
- Sensible regulation-GMO-Pre-1979
- Human capital-tolerant environment
- Tradition of technology
- Reward innovation
- High risk capital-competitive tax treatment

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP
- Sensible regulation-GMO-Pre-1979
- Human capital-tolerant environment
- Tradition of technology
- Reward innovation
- High risk capital-competitive tax treatment
- Legal-financial infrastructure

- First-class academic institution
- Healthy academia-industry relationship
- Strong protection of IP
- Sensible regulation-GMO-Pre-1979
- Human capital-tolerant environment
- Tradition of technology
- Reward innovation
- High risk capital-competitive tax treatment
- Legal-financial infrastructure
- Government support (remove obstacles)

Biofuels and chemicals are first and foremost a feedstock story

- Key competitive advantages
 - Land availability
 - Plentiful water
 - Sunlight and highly productive land

Industrial Biotech and Brazil

A natural

- A natural
- Biotech and Metabolic Engineering: technologies of the 21st century

- A natural
- Biotech and Metabolic Engineering: technologies of the 21st century
- Brazil experimenting with globalization:
 Biotech is the safest place to start

- A natural
- Biotech and Metabolic Engineering: technologies of the 21st century
- Brazil experimenting with globalization:
 Biotech is the safest place to start
- Present negative outlook: An opportunity to move in and make up for lost ground!

- A natural
- Biotech and Metabolic Engineering: technologies of the 21st century
- Brazil experimenting with globalization:
 Biotech is the safest place to start
- Present negative outlook: An opportunity to move in and make up for lost ground!
- Biotech and overall economy: can contribute 5-10% of GDP, lift rural development, substitute imports

- A natural
- Biotech and Metabolic Engineering: technologies of the 21st century
- Brazil experimenting with globalization:
 Biotech is the safest place to start
- Present negative outlook: An opportunity to move in and make up for lost ground!
- Biotech and overall economy: can contribute 5-10% of GDP, lift rural development, substitute imports
- Very promising technology: unlimited products

What is in the future?

Future applications drivers

- Sustained interest in utilization of renewable resources
 - Pressure on commodities will continue
 - Climate change concerns will persist
 - Biotechnology is better than chemistry in utilizing carbohydrates

Expected supply curves for biomass

http://www1.eere.energy.gov/biomass/pdfs/billion_ton_update.pdf

Expected supply curves for biomass

Need a sustainable bio-economy

Can land-based renewables replace sustainably fossil fuels?

- Yes for the production of chemicals
- Fuel production must involve lignocellulosics, MSW or gases

Global Biotech business

		<u>2010</u>	<u>2015</u>
Food		\$80B	100
 Medica 	al	125	225
 Agricul 	tural	15	25
Marine		10	20
Industr	ial	80	180
 TOTAL 		\$310B	\$550B

Sources: Frost & Sullivan, BCC Research